

DATA
WAREHOUSING
UNIT 1,2,3,4,5,6

TYBSC(IT) SEM 6

COMPILED BY : SZ,JP,IN

302 PARANJPE UDYOG BHAVAN, NEAR KHANDELWAL SWEETS, NEAR THANE

STATION , THANE (WEST)

PHONE NO: 8097071144 / 8097071155 / 8655081002

TYBSC-IT (SEM 6) DATA WAREHOUSING

1

WE-IT TUTORILAS PHNO:8097071144/55

UNIT 1

1.1 Introduction to Data Warehouse

What Is A Data Warehouse?

A data warehouse is a powerful database model that significantly enhances the user‟s ability to quickly
analyze large, multidimensional data sets. It cleanses and organizes data to allow users to make
business decisions based on facts. Hence, the data in the data warehouse must have strong analytical
characteristics. Creating data to be analytical requires that it be subject-oriented, integrated, time-
referenced, and non-volatile.

Subject-Oriented Data

In a data warehouse environment, information used for analysis is organized around subjects:
employees, accounts, sales, products, and so on. This subject specific design helps in reducing
the query response
time by searching through very few records to get an answer to the user‟s question.

Integrated Data

Integrated data refers to de-duplicating information and merging it from many sources into one
consistent location. When short listing your top 20 customers, you must know that “HAL” and
“Hindustan Aeronautics Limited” are one and the same. Much of the transformation and loading
work that goes into the data warehouse is centered on integrating data and standardizing it.

Time-Referenced Data

Time-referenced data essentially refers to its time-valued characteristic. For example, the user
may ask “What were the total sales of product „A‟ for the past three years on New Year‟s Day
across region „Y ‟?”

Time-referenced data when analyzed can also help in spotting the hidden trends between
different associative data elements, which may not be obvious to the naked eye. This exploration
activity is
termed “data mining”.

Non-Volatile Data

The non-volatility of data, characteristic of data warehouse, enables users to dig deep into history
and arrive at specific business decisions based on facts.

Why A Data Warehouse?

The Data Access Crisis

If there is a single key to survival in the 1990s and beyond, it is being able to analyze, plan, and
react to changing business conditions in a much more rapid fashion. In order to do this, top

TYBSC-IT (SEM 6) DATA WAREHOUSING

2

WE-IT TUTORILAS PHNO:8097071144/55

managers, analysts, and knowledge workers in our enterprises, need more and better
information. Every day, organizations large and small, create billions of bytes of data about all
aspects of their business; millions of individual facts about their customers, products, operations
and people. But for the most part, this is locked up in a maze of computer systems and is
exceedingly difficult to get at. This phenomenon has been described as “data in jail”.

Data Warehousing

Data warehousing is a field that has grown from the integration of a number of different
technologies and experiences over the past two decades. These experiences have allowed the IT
industry to identify the
key problems that need to be solved.

Operational vs. Informational Systems

Operational systems, as their name implies, are the systems that help the every day operation of
the enterprise. These are the backbone systems of any enterprise, and include order entry,
inventory, manufacturing, payroll and accounting. Due to their importance to the organization,
operational systems were almost always the first parts of the enterprise to be computerized.

Informational systems deal with analyzing data and making decisions, often major, about how the
enterprise will operate now, and in the future. Not only do informational systems have a different
focus from operational ones, they often have a different scope. Where operational data needs are
normally focused upon a single area, informational data needs often span a number of different
areas and need large amounts of related operational data.

Framework Of The Data Warehouse

One of the reasons that data warehousing has taken such a long time to develop is that it is actually a
very comprehensive technology. In fact, it can be best represented as an enterprise-wide framework for
managing informational data within the organization. In order to understand how all the components
involved in a data warehousing strategy are related, it is essential to have a Data Warehouse
Architecture.

Data Warehouse Architecture

A Data Warehouse Architecture (DWA) is a way of representing the overall structure of data,
communication, processing and presentation that exists for end-user computing within the enterprise. The
architecture is made up of a number of interconnected parts:

 Source system

 Source data transport layer

 Data quality control and data profiling layer

 Metadata management layer

 Data integration layer

 Data processing layer

 End user reporting layer

Source System

TYBSC-IT (SEM 6) DATA WAREHOUSING

3

WE-IT TUTORILAS PHNO:8097071144/55

Operational systems process data to support critical operational needs. In order to do this,
operational databases have been historically created to provide an efficient processing structure for a
relatively small number of well-defined business transactions.

Clearly, the goal of data warehousing is to free the information locked up in the operational systems
and to combine it with information from other, often external, sources of data. Increasingly, large
organizations are acquiring additional data from outside databases. This information includes
demographic, econometric, competitive and purchasing trends. The so-called information
superhighway is providing access to more data resources every day.

Clearly, the goal of data warehousing is to free the information locked up in the operational systems
and to combine it with information from other, often external, sources of data. Increasingly, large
organizations are acquiring additional data from outside databases. This information includes
demographic, econometric, competitive and purchasing trends. The so-called information
superhighway is providing access to more data resources every day.

Source Data Transport Layer
The data transport layer of the DWA, largely constitutes data trafficking. It particularly represents the
tools and processes involved in transporting data from the source systems to the enterprise
warehouse system. Since the data volume is huge, the interfaces with the source system have to be
robust and scalable enough to manage secured data transmission.

Data Quality Control and Data Profiling Layer
data quality causes the most concern in any data warehousing solution. Incomplete and inaccurate
data will jeopardize the success of The data warehouse.

Data warehouses do not generate their own data; rather they rely on the input data from the various
source systems. It is very essential to measure the quality of the source data and take corrective
action even before the information is processed and loaded into the target warehouse.

Metadata Management Layer
Metadata is the information about data within the enterprise. Record descriptions in a COBOL
program are metadata. So are DIMENSION statements in a FORTRAN program, or SQL Create
statements. The information in an ERA diagram is also metadata. In order to have a fully functional
warehouse, it is necessary to have a variety of metadata available as also facts about the end-user
views of data and information about the operational databases. Ideally, endusers should be able to
access data from the warehouse (or from the operational databases) without having to know where it
resides or the form in which it is stored.

Data Integration Layer
The data integration layer is involved in scheduling the various tasks that must be accomplished to
integrate data acquired from various source systems. A lot of formatting and cleansing activities
happen in this layer so that the data is consistent across the enterprise. This layer is heavily driven by
off-the-shelf tools and consists of high-level job control for the many processes (procedures) that
must occur to keep the data warehouse Up-to-date.

Data Processing Layer
The warehouse (core) is where the dimensionally modeled data resides. In some cases, one can
think of the warehouse simply as a transformed view of the operational data; but modeled for
analytical purposes.

This layer consists of data staging and enterprise warehouse. Data staging often involves complex
programming, but increasingly warehousing tools are being created that help in this process. Staging

TYBSC-IT (SEM 6) DATA WAREHOUSING

4

WE-IT TUTORILAS PHNO:8097071144/55

may also involve data quality analysis programs and filters that identify patterns and structures within
existing operational data.

End User Reporting Layer
Success of a data warehouse implementation largely depends upon ease of access to valuable
information. In that sense, the end user reporting layer is a very critical component. Based on the
business needs, there can be several types of reporting architectures and data access layers.

Data Warehouse Options

Key factors that need to be considered:

 Scope of the data warehouse

 Data redundancy

 Type of end-user

Scope

The scope of a data warehouse may be as broad as all the informational data for the entire enterprise
from the beginning of time, or it may be as narrow as a personal data warehouse for a single

TYBSC-IT (SEM 6) DATA WAREHOUSING

5

WE-IT TUTORILAS PHNO:8097071144/55

manager for a single year. There is nothing that makes one of these more of a data warehouse than
another.

In practice, the broader the scope, the more valuable the warehouse is to the enterprise and the
more expensive and time consuming it is to create and maintain.

Data Redundancy
There are essentially three levels of data redundancy that enterprises should think about when
considering their data warehouse options:

 “Virtual” or “point-to-point” data warehouses

 Central data warehouses

 Distributed data warehouses

“Virtual” or “point-to-point” Data Warehouses
A virtual or point-to-point data warehousing strategy means that endusers are allowed to get at
operational databases directly, using whatever tools are enabled to the “data access network”.
Virtual data warehouses often provide a starting point for organizations to learn what end-users
are really looking for.

Central Data Warehouses
The central data warehouse is a single physical database that contains all data for a specific
functional area, department, division, or enterprise.

Such warehouses are often selected where there is a common need for informational data and
there are large numbers of end-users already connected to a central computer or network.

A central data warehouse may contain records for any specific period of time and usually,
contains information from multiple operational systems.

Distributed Data Warehouses
Distributed data warehouses are those in which certain components are distributed across a
number of different physical databases. Increasingly, large organizations are pushing decision-
making down to lower levels of the organization and this is in turn, pushing the data needed for
decision making down (or out) to the LAN or local computer serving the local decision-maker.

Distributed data warehouses usually involve the most redundant data and, as a consequence,
most complex loading and updating processes

Type of End-user

 Executives and managers

 Power users (business and financial analysts, engineers)

 Support users (clerical, administrative)

Developing Data Warehouses
Developing a good data warehouse is no different from any other IT project— it requires careful planning,
requirements definition, design, prototyping and implementation. The first and most important element is
a planning process that determines what kind of data warehouse strategy the organization is going to
start with.

TYBSC-IT (SEM 6) DATA WAREHOUSING

6

WE-IT TUTORILAS PHNO:8097071144/55

Developing Strategy
Who is the audience? What is the scope? What type of data warehouse should we build?

There are a number of strategies by which organizations can get into data warehousing.

One way is to establish a “virtual data warehouse” environment. This can be done by:

1. Installing a set of data access, data directory and process management facilities
2. Training the end-users
3. Monitoring how the data warehouse facilities are actually used
4. Based on actual usage, creating a physical data warehouse to support the high-frequency
requests

A second strategy is to simply build a copy of the operational data from a single operational system and
enable the data warehouse from a series of information access tools. This strategy has the advantage of
being both simple and fast.

Ultimately, the optimal data warehousing strategy is to select a user population based on value to the
enterprise and analyze their issues, questions and data access needs. Based on these needs, prototype
data warehouses are built and populated so the end-users can experiment and modify their requirements.

Evolving DWA

The DWA (Data Warehouse Architecture) is simply a framework for understanding data warehousing and
how the components of data warehouse fit together. Only the most sophisticated organizations will be
able to put together such architecture the first time out. What the DWA provides then, is a kind of
roadmap that can be used to design towards. Coupled with an understanding of the options at hand,
the DWA provides a useful way of determining if the organization is moving toward a reasonable data
warehousing framework.

Designing Data Warehouses

Designing data warehouses is very different from designing traditional operational systems. For one thing,
data warehouse users typically don‟t know nearly as much about their wants and needs as operational
users. Second, designing a data warehouse often involves thinking in terms of much broader, and more
difficult to define, business concepts than does designing an operational system. In this respect, data
warehousing is quite close to Business Process Reengineering (BPR).

Managing Data Warehouses

 Data warehouses are not magic— they take a great deal of hard work.

 data warehouses require careful management and marketing.

 A data warehouse is a good investment only if end-users can actually get at vital information
faster and cheaper than they are using current technology.

 IT management must understand that if they embark on a data warehousing program, they are
going to create new demands upon their operational systems— demands for better data,
demands for Consistent data and demands for different kinds of data.

End Points

Data warehousing is growing by leaps and bounds and it is becoming increasingly difficult to estimate
what new developments are most likely to affect it. Clearly, the development of parallel DB servers with

TYBSC-IT (SEM 6) DATA WAREHOUSING

7

WE-IT TUTORILAS PHNO:8097071144/55

improved query engines is likely to be one of the most important. Parallel servers will make it possible to
access huge data bases in much less time.

Another new technology is data warehouses that allow for the mixing of traditional numbers, text and
multimedia. The availability of improved tools for data visualization (business intelligence) will allow users
to see things that could never be seen before.

Data warehousing is not a new phenomenon. All large organizations already have data warehouses, but
they are just not managing them. Over the next few years, the growth of data warehousing is going to be
enormous with new products and technologies coming out frequently. In order to get the most out of this
period, it is going to be important that data warehouse planners and developers have a clear idea of what
they are looking for and then choose strategies and methods that will provide them with performance
today and flexibility for tomorrow.

Goals
In order to provide information with which users can increase profitability, gain competitive advantage or
make better business decisions, the data warehouse must meet the following goals:

Provide Easy Access to Corporate Data
 The user access tools must be easy to use, so that accessing warehouse data will be simple and

intuitive

 Access should be graphic so that it will be easier for users to understand and spot trends or area
of interest

 Access should be manageable by end users of data warehouse, for these are predominantly
business analysts, mid-level managers, and CEOs who seldom possess technical acumen to get
the data but are highly qualified to analyze the information. They must easily get answers to their
questions and ask new questions, all without getting the IT team involved

 The process of getting and analyzing data must be fast. Questions leapfrog, so you must get
answers fast. The very nature of data analysis is that not all questions are known beforehand.
This involves a lot of unpredictable, ad-hoc inquiry during a typical data analysis session. In an
analytic environment, the user is directly interacting with the facts to find patterns, clues or
problem areas, rather than looking at a printed report. The answers have to be delivered fast
before users lose their train of thought

Provide Clean and Reliable Data for Analysis
 For consistent analysis, the data environment must be stable. Now that the users can create their

own reports, they must have consistent data. One department doing an analysis must get the
same result as any other.

 Source conflicts must be resolved. The source for warehouse data is the transactional system
and it is frequently seen that these systems often have data stored in several different
applications in different formats. A custom er ID may be represented as “ 100044629” in one
system and “44629” in another. A straight load of information for this company into the data
warehouse would result in two customers being represented with transactions being listed and no
supporting details.

 Historical analysis must be possible, so that data can be analyzed cross a span of time.

TYBSC-IT (SEM 6) DATA WAREHOUSING

8

WE-IT TUTORILAS PHNO:8097071144/55

1.2 Data Warehouse Design Consideration and
Dimensional Modeling

Data Warehouses support business decisions by collecting, consolidating, and organizing data for
reporting and analysis with tools such as online analytical processing (OLAP) and data mining models.
Although data warehouses are built on relational database technology, the design of a data warehouse
data model and subsequent physical implementation differs substantially from the design of an online
transaction processing (OLTP) system.

How do these two systems differ and what design considerations should be kept in mind while designing
a data warehouse data model?

OLTP Database Data Warehouse Database

Designed for real-time business transactions and
processes.

Designed for analysis o f business measures by
subject area, category and attributes.

Optimized for a common and known set o f
transactions.

Optimized for bulk loads and large complex,
unpredictable queries.

Designed for validation o f data during
transactions,

Designed to be loaded with consistent, valid data;
uses very minimal validation

Supports few concurrent users relative to the OLTP
environment.

Supports large user bases often distributed across
geographies.

Houses very minimal historical data Houses a mix o f most current information as well
as historical data

An OLTP system requires a normalized structure to minimize redundancy, provide validation of input
data, and support a high volume of transactional data processing needs. A transaction usually involves
business event(s), such as placing an order, posting an invoice payment, a credit/debit transaction and
the like. An OLTP model often looks like a spider web of hundreds or even thousands of related tables.

In contrast, a typical dimensional model uses a star or snowflake data model that is easy to understand
and relate to business needs, supports simplified business queries, and provides superior data retrieval
process by minimizing large table joins.

The principal characteristics of a dimensional model are a set of detailed business facts surrounded by
multiple dimensions that describe those facts.

Dimensional models and traditional entity/relationship (E-R) modeling are logical modeling used to
capture essential details of the model‟s subject. E-R diagrams usually represent conceptual models, and
are used to capture complex relationships (many-to-many, one-to-many or operational relationships)
among entities. In contrast, a dimensional model represents the following characteristics:

 Every relationship must be mandatory (one-to-one or one-to-many)

 There must be no more than one possible path between any two entities (this prevents cyclic
structures)

 Groups of optional attributes used to represent relationships such as phase progression,
transitivity relations and so on.

TYBSC-IT (SEM 6) DATA WAREHOUSING

9

WE-IT TUTORILAS PHNO:8097071144/55

OLTP DATA MODEL AND BUSINESS PROCESSES

DIMENSIONAL DATAMODEL AND BUSINESS PROCESSES

TYBSC-IT (SEM 6) DATA WAREHOUSING

10

WE-IT TUTORILAS PHNO:8097071144/55

Defining Dimensional Model

The purpose of dimensional model is to improve performance by matching data structures to queries.
Users query the data warehouse looking for data like:

 Total sales in volume and revenue for the NE region for product „XYZ‟ for a certain period this
year compared to the same period last year

 Characteristics of term life policies whose insured amount is less than $ 10,000

The central theme of a dimensional model is the star schema, which consists of a central fact table,
containing measures, surrounded by qualifiers or descriptors called „dimensions‟.

In a star schema, if a dimension is complex and contains relationships such as hierarchies, it is
compressed or flattened to a single dimension.

Star Schema Model

Another version of star schema is a snowflake schema. In a snowflake schema complex dimensions are
normalized. Here, dimensions maintain relationships with other levels of the same dimension.

The dimension tables are usually highly non-normalized structures. These tables can be normalized to
reduce their physical size and eliminate redundancy which will result in a snowflake schema. Most

TYBSC-IT (SEM 6) DATA WAREHOUSING

11

WE-IT TUTORILAS PHNO:8097071144/55

dimensions are hierarchic

Snowflake Model

Granularity Of Facts
The granularity of a fact is the level of detail at which it is recorded. If data is to be analyzed effectively, it
must be all at the same level of granularity.

The more granular the data, the more you can do with it. Excessive granularity brings needless space
consumption and increases complexity. You can always aggregate details.

Granularity is not absolute or universal across industries. This has two implications. First, grains are not
predetermined; second, what is granular to one business may be summarized for another.

Granularity is determined by:

 Number of parts to a key

 Granularity of those parts

Adding elements to an existing key always increases the granularity of the data; removing any part of an
existing key decreases its granularity.

TYBSC-IT (SEM 6) DATA WAREHOUSING

12

WE-IT TUTORILAS PHNO:8097071144/55

Granularity is also determined by the inherent cardinality of the entities participating in the primary key.

Data at the order level is more granular than data at the customer level, and data at the customer level is
more granular than data at the organization level.

Additivity Of Facts
A fact is additive over a particular dimension if adding it through or over the dimension results in a fact
with the same essential meaning as the original, but is now relative to the new granularity.

A fact is said to be fully additive if it is additive over every dimension of its dimensionality; partially additive
if additive over at least one but not all of the dimensions; and non-additive if not additive over any
dimension.

In general, facts representing individual business transactions are fully additive, although cumulative
totals are semi-additive. Non-additive facts are usually the result of ratio or other calculations. Where
possible, these should be replaced with the underlying atomic level of data and the derivation formulae
should be left to be handled in the queries.

The values that quantify facts are usually numeric, and are often referred to as measures. Measures are
typically additive along all dimensions, such as quantity in a sales fact table. A sum of quantity by
customer, product, time, or any combination of these dimensions results in a meaningful value.

Some measures are not additive along one or more dimensions, such as quantity-on-hand in an inventory
system or price in a sales system. Some measures can be added along dimensions other than the time
dimension; such measures are referred to as semi-additive. For example, quantity-on-hand can be added
along the inventory dimension to achieve a meaningful total of the quantity of items on hand in all
warehouses at a specific point in time. Along the time dimension, however, an aggregate function, such
as average, must be applied to provide meaningful information about the quantity of items on hand.

Measures that cannot be added along any dimension are truly non additive. Queries, reports, and
applications must evaluate measures properly according to their summarization constraints. Non-additive
measures can often be combined with additive measures to create new additive measures. For example,
quantity multiplied by price produces extended price or sale amount, an additive value.

For example, a fact representing cumulative sales units over a day at a store for a product is a fully
additive fact. Adding it over any of its dimensions, yields a fact with the same basic meaning except it‟s
for a coarser granularity. However, a fact representing ending inventory on hand for a week at a store for
a product is a partially additive fact: Adding it over the dimensions containing the store and product levels
doesn‟t fundamentally change its meaning. But adding over the time dimension provides a result no
longer representing ending inventory on hand. The ending inventory on hand for each new sample would
have to be the sum of the on-hand values for only those samples corresponding to the latest week in
consideration.

Sometimes, careful consideration can provide alternatives to nonadditive facts. For example, a sales fact
representing cost is useful. It lets you calculate gross profit. However, per-unit cost is non-additive,
which would present some difficulty in summarizing the report data. By storing the cost as an extended
cost (per-unit cost times units sold), it will be fully additive. Furthermore, one can use a calculation (sum
of extended cost divided by sum of sales units) to obtain average unit cost for any coarser granularity.

Some facts, such as the sales facts in Fig., represent actual events. The actual event can be traced back
to at least one business transaction (such as sales, orders, or inventory). The tie to a business
transaction may be direct (as with sales and orders, where the fact represents a single aspect of a single

TYBSC-IT (SEM 6) DATA WAREHOUSING

13

WE-IT TUTORILAS PHNO:8097071144/55

transaction), or indirect (as with the case of the inventory fact, where the fact represents the net effect of
some t ransact ions on the s tate of the bus iness) . Hierarchies in Dimensional Model

Hierarchies in Dimensional Model

Other facts represent potential events; those representing the ability of the business to perform a
transaction. For example, the set of products a particular store sells during a particular day is typically
much smaller than the set of products it carries on that day.

Functional Dependency Of The Data
Functional dependency of data means that the attributes within a given entity are fully dependent on the
entire primary key of the entity— no more, no less.

The implication is that each attribute has a one-to-one relationship with its primary key. For each instance
of a primary key, there is one set of applicable values; for each attribute, there is only one primary key
that properly gives it its identity.

For example, in the customer entity, customer name, date of birth, Social Security Number all belong to
the primary key of customer ID. Conversely, if a customer can have different addresses, each with a
different role (but only one role), then the customer address depends on, say, customer ID + role. One
implication of functional dependency is non-redundancy.

Helper Tables
Helper tables usually take one of two forms:

 Help for multi-valued dimensions

 Helper tables for complex hierarchies

Multi-Valued Dimensions

TYBSC-IT (SEM 6) DATA WAREHOUSING

14

WE-IT TUTORILAS PHNO:8097071144/55

Take a situation where a household can own many insurance policies, yet any policy could be owned by
multiple households. The simple approach to this is the traditional resolution of the many-to-many
relationship, called an associative entity.

Multi-Valued Dimensions

Complex Hierarchies
A hierarchy is a tree structure, such as an organization chart. Hierarchies can involve some form of
recursive relationship. Recursive relationships come in two forms— “self‟ relationships (1:M) and “bill of
materials” relationships (M: M). A self relationship involves one table whereas a bill of materials involves
two.

These structures have been handled in ER modeling from its inception. They are generally supported as
a self-relating entity or as an associative entity in which an associate entity (containing parent-child
relationships) has dual relationships to a primary entity.

TYBSC-IT (SEM 6) DATA WAREHOUSING

15

WE-IT TUTORILAS PHNO:8097071144/55

Physically, a self-relationship is called a self-join. As examples, an employee can manage other
employees, a customer can roll up into different customer groups, or an organization can be broken into
different organization units.

These are actually one-to-many relationships of one instance of an entity with other instances of the
same entity.

Complex Hierarchies - Many to Many

TYBSC-IT (SEM 6) DATA WAREHOUSING

16

WE-IT TUTORILAS PHNO:8097071144/55

UNIT 2

2.1 An Introduction to Oracle Warehouse

Builder

Introduction to data warehousing
Data warehouses are becoming increasingly common as businesses have realized the need to be
able to mine the information they have stored in the electronic form in order to provide a valuable
insight into the operation of their business and how best to improve it.

Organizations need to monitor these processes, define policies, and—at a more strategic level—
define the visions and goals that will move the company forward in the future.

What is a data warehouse?
 It show how companies these days need information to support strategic-level decision

making.

 Fundamentally, a data warehouse is a decisional database system.

 It is designed to support the decision makers in the organization in ways a transactional
processing system is ill-equipped to handle, such as the strategic-level goals and visions of
an organization.

 To think strategically, a large amount of data over long periods of time is needed.

 To support that level of information, we need more data than what is provided by the day-to-
day transactions.

 We'll need much more information compiled over greater time periods and this is where the
data warehouse comes in.

 The data in a data warehouse is composed of facts (actual numerical measures) and
dimensions (descriptive data about those measures) that place the facts in a context that is
understandable to the end-user decision maker.

 The design of a data warehouse should be different from that of a transactional database.

 The data warehouse must handle large amounts of data, and must be simple to query and
understand by the end users.

For instance, a customer makes a purchase of a toy with ACME Toys and Gizmos on a particular day over the
Internet, which results in a dollar amount of the transaction. The dollar amount becomes the fact and the toy
purchased, the customer, and the location of the purchase (the Internet in this case) become the dimensions
that provide a scope of the fact measurement and give it a meaning.

The diagram of the database structure has a fact table in the middle surrounded by dimension tables,
resulting in something that looks like a star.

It is also possible that these dimensions may themselves have other tables surrounding them, resulting in
something akin to a snowflake.

TYBSC-IT (SEM 6) DATA WAREHOUSING

17

WE-IT TUTORILAS PHNO:8097071144/55

Where does OWB fit in?
The Oracle Warehouse Builder is a tool provided by Oracle, which can be used at every stage of the
implementation of a data warehouse, from initial design and creation of the table structure to the ETL
process and data-quality auditing. So, the answer to the question of where it fits in is—everywhere.

Installation of the database and OWB
1. run the setup.exe

 This will launch the Oracle Universal Installer program
 One of the first questions the installer will ask us is about setting up our

ORACLE_HOME—the destination to install the software on the system and the name of
the home location.

 default—OraDb11g_home1

click on the Next button to continue and the install program will perform its prerequisite checks to ensure
our system is capable of running the database

That should show a status of Succeeded for all the checks

The install screens will proceed to the Summary screen where we can verify the options that we selected
for the installation before actually doing it .

TYBSC-IT (SEM 6) DATA WAREHOUSING

18

WE-IT TUTORILAS PHNO:8097071144/55

WHAT WE ARE INTRESTED IN

When it completes we'll be presented with the final screen with a little reminder similar to the following
where bob is the login name of the user running the installation:

TYBSC-IT (SEM 6) DATA WAREHOUSING

19

WE-IT TUTORILAS PHNO:8097071144/55

Configuring the listener
The listener is the utility that runs constantly in the background on the database server, listening for client
connection requests to the database and handling them.

It can be installed either before or after the creation of a database, but there is one option during the
database creation that requires the listener to be configured

Run Net Configuration Assistant to configure the listener. It is available under the Oracle menu on the
Windows Start menu

The welcome screen will offer us four tasks that we can perform with this assistant. We'll select the first one
to configure the listener.

TYBSC-IT (SEM 6) DATA WAREHOUSING

20

WE-IT TUTORILAS PHNO:8097071144/55

The next screen will ask you what we want to do with the listener. The four options are as follows:

 Add

 Reconfigure

 Delete
 Rename

Only the Add option will be available since we are installing Oracle for the first time. The remainder of the
options will be grayed out and will be unavailable for selection. If they are not, then there is a listener already
configured and we can proceed to the next section—Creating the database.

The next screen is the protocol selection screen. It will have TCP already selected for us, which is what most
installations will require. This is the standard communications protocol in use on the Internet and in most
local networks. Leave that selected and proceed to the next screen to select the port number to use.

The default port number is 1521, which is standard for communicating with Oracle databases and is the one
most familiar to anyone who has ever worked with an Oracle database.

Creating the database

We can install a new database using Database Configuration Assistant

TYBSC-IT (SEM 6) DATA WAREHOUSING

21

WE-IT TUTORILAS PHNO:8097071144/55

1. The first step is to specify what action to take. Since we do not have a database created, we'll
select the Create a Database option in Step 1.

2. This step will offer the following three options for a database template to select:

 General Purpose or Transaction Processing

 Custom Database
 Data Warehouse

 We are going to choose the Data Warehouse option for our purposes

3. This step of the database creation will ask for a database name.

Since we're creating this database for the data warehouse of ACME Toys and Gizmos Company, we'll
choose a name that reflects this—ACME for the company name and DW for data warehouse,
resulting in a database name of ACMEDW.

As the database name is typed in, the SID (or Oracle System Identifier) is automatically filled in to
match it.

4. This step of the database creation process asks whether we want to configure Enterprise Manager.
The box is checked by default and leave it as is.

5. On this screen (step 5) we can set the database passwords on the system accounts using a different
one for each account, or by choosing one password for all four. We're going to set a single password
on all four, but for added security in a production environment, it is a good idea to make a different
password for each. Click on the option to Use the Same Administrative Password for All Accounts
and enter a password.

6. This step is about storage. We'll leave it at the default of File System for storage management.
The other two options are for more advanced installations that have greater storage needs.

7. This step is for specifying the locations where database files are to be created. This can be left at
the default for simplicity

8. The next screen is for configuring recovery options. We're up to step 8 now. If we were installing
a production database, we would want to make sure to use the Flash Recovery option and to Enable

TYBSC-IT (SEM 6) DATA WAREHOUSING

22

WE-IT TUTORILAS PHNO:8097071144/55

Archiving. Flash Recovery is a feature Oracle has implemented in its database to provide a location
that is managed by the database. It stores backups and files needed to recover a database in the
event of disk failure. With Flash Recovery Area specified, we can recover data that would otherwise
be lost in a system failure.

9. 9. This step is where we can have the installation program create some sample schemas in the
database for our reference, and specify any custom scripts to run. The text on the screen can be read
to decide whether they are needed or not. We don't need either of these for this book, so it doesn't
matter which option we choose.

10. The next screen is for Initialization Parameters. These are the settings that are put in place to
define various options for the database such as Memory options.

11. The next screen is for security settings. For the purposes of this book and its examples, we'll
check the box to Revert to pre-11g security settings since we don't need the additional features.
However, for a production environment, it is a good idea to leave the default checked to use Oracle's
more advanced security features.

12. This step is automatic maintenance and we'll deselect that option and move on, since we don't
need that additional functionality. Automatic Maintenance Tasks are tasks that run in predefined
maintenance windows of time to perform various preconfigured maintenance operations on the
database.

13. The next step (step 13 of 14) is the Database Storage screen referred to earlier. Here the locations
of the pre-built data and control files can be changed if needed. They should be left set to the default
for simplicity since this won't be a production database. For a production environment, we would
want to consider storing datafiles on separate partitions for performance reasons, and to minimize
the impact of disk failures on the running database if something goes wrong.

14. The final step has the following three options, and any or all can be selected for

creating the database:

 Create the database directly

 Save the creation options as a template for later use
 Save database creation scripts that can be used later to create the database

The Next button is grayed out since this is the last screen. So click on the Finish button to
begin creating the database using the selections we've just chosen. It will display a summary
screen showing what options it will be using to install with.

We can scroll down that window and verify the various options that will be installed,
including Oracle Warehouse Builder, which will have a true in the Selected column as shown
here:

TYBSC-IT (SEM 6) DATA WAREHOUSING

23

WE-IT TUTORILAS PHNO:8097071144/55

We may see the progress screen at 100% doing nothing with apparently no other display visible. Just look

around the desktop underneath other windows for the Database Configuration Screen. It's important for
the next step

On the final Database Configuration Screen, there is a button in the lower right corner labeled Password
Management.

We need to click on this button to unlock the schema created for OWB use. Oracle configures its
databases with most of the pre-installed schemas locked, and so users cannot access them. It is
necessary to unlock them specifically, and assign our own passwords to them if we need to use
them. One of them is the OWBSYS schema. This is the schema that the installation program
automatically installs to support the Warehouse Builder. We will be making use of it later when we
start running OWB.

 Click on the Password Management button and on the resulting Password Management
screen, we'll scroll down until we see the OWBSYS schema and click on the check box to
uncheck it (indicating we want it unlocked) and then type in a password and confirm it as
shown in the following image:

TYBSC-IT (SEM 6) DATA WAREHOUSING

24

WE-IT TUTORILAS PHNO:8097071144/55

 Click on the OK button to apply these changes and close the window. On the Database Configuration

Screen, click on the Exit button to exit out of the Database Configuration Assistant.

Installing the OWB standalone software:

The OWB client software is now installed by default with the main database installation.

We can verify that by checking the Start menu entry for Oracle. We will see a submenu entry for Warehouse

Builder as shown in the following image:

For the task of installing the standalone client, we'll need to download the OWB client install file.

 So we will go back to the Oracle site on the Internet. The download page is at the following
URL at the time of writing:
http://www.oracle.com/technology/software/products/warehouse/index.html.

 If that is not working, go to the main Oracle site and search for the Business Intelligence |

Data Warehousing page where there is a link for the download of the OWB client.

 So we'll accept it and download the install file to the client computer on which we'll be installing the

software.

TYBSC-IT (SEM 6) DATA WAREHOUSING

25

WE-IT TUTORILAS PHNO:8097071144/55

 When we have downloaded the ZIP file and unzipped it to our hard drive, run setup.exe in the

top-level folder to run the Oracle Universal Installer.

The installation steps are as follows:

1. The first step it goes through is asking us for the Oracle home details. It's similar to what

it asked at the beginning of the database installation.

The installer will again suggest OraDb11g_home1 or something similar, but we'll change it
to OraOWB11g_home1 since it's just the OWB installation and not the full database

 When installing the standalone OWB software, remember that it cannot be installed into the same
ORACLE home as the database.

 It must reside in it own Oracle home folder. So if we have a database that's already installed on the
same machine, we'll have to make sure the ORACLE_HOME we specify is different.

1. The next and final step is the summary screen.

2. When the installation is complete, we will be presented with the final success screen and an Exit

button.

TYBSC-IT (SEM 6) DATA WAREHOUSING

26

WE-IT TUTORILAS PHNO:8097071144/55

OWB components and architecture:

Oracle Warehouse Builder is composed on the client of the Design Center (including the Control Center

Manager) and the Repository Browser. The server components are the Control Center Service, the

Repository (including Workspaces), and the Target Schema.

A diagram illustrating the various components and their interactions follows

Client and server:

1. These are really just logical notions to indicate the purpose of the individual components and

are not necessarily physically separate machines

2. The Design Center is the main client graphical interface for designing our data warehouse.

3. A good deal of time to define our sources and targets, and describe the extract, transform, and load

(ETL) processes we use to load the target from the sources.

4. The ETL procedures are what we will define to carry out the extraction of the data from our sources,

any transformations needed on it and subsequent loading into the data warehouse

5. Design Center is a logical design only, not a physical implementation.

6. This logical design will be stored behind the scenes in a Workspace in the Repository on the server.

The user interacts with the Design Center, which stores all its work in a Repository Workspace.

7. The Control Center Manager for managing the creation of that physical implementation by deploying

the designs we've created into the Target Schema..

8. The Control Center Manager to execute the design by running the code associated with the ETL that

we've designed.

TYBSC-IT (SEM 6) DATA WAREHOUSING

27

WE-IT TUTORILAS PHNO:8097071144/55

9. The Control Center Manager interacts behind the scenes with the Control Center Service, which runs

on the server as shown in the previous image.

10. The user directly interacts with the Control Center Manager and the Design Center only.

11. The Target Schema is where OWB will deploy the objects to, and where the execution of the ETL

processes that load our data warehouse will take place. It is the actual data warehouse schema that

gets built.

12. It contains the objects that were designed in the Design Center, as well as the ETL code to load those

objects. The Target Schema is not an actual Warehouse Builder software component, but is a part of

the Oracle Database. However, it will contain Warehouse Builder components such as synonyms that

will allow the ETL mappings to access objects in the Repository.

13. The Repository is the schema that hosts the design metadata definitions we create for our sources,

targets, and ETL processes. Metadata is basically data about data.

14. The Repository is a Warehouse Builder software component for which a separate schema is created

when the database is installed—OWBSYS.

15. The Repository is created in the OWBSYS schema during the database installation. So setting up the

Repository information and workspaces no longer requires SYSDBA privileges for the user to install

the Repository. SYSDBA is an advanced administrative privilege that is assigned to a user in an Oracle

database.

16. For security reasons, we want to restrict user accounts with SYSDBA privilege to a minimum.

Configuring the repository and workspaces:

The Repository Assistant application to configure the repository, create a workspace, and create the

objects in the repository that are needed for OWB to run. This application is available from the Start

Menu under the Warehouse Builder | Administration submenu of the Oracle program group as shown

here:

TYBSC-IT (SEM 6) DATA WAREHOUSING

28

WE-IT TUTORILAS PHNO:8097071144/55

The most common configuration is to run this application on the same machine where the repository

islocated and the Control Center Service is going to run, which is all on one machine. There are other less

common options for where to run the Control Center Service and where the Repository is located in relation

to the target schema.

The steps for configuration are as follows:

1. The Repository Assistant application on the server (the only machine we've installed it on)

and the first step it is going to ask us for the database connection information—Host Name,

Port Number, and Oracle Service Name—or a Net Service Name for a SQL*Net connection.

The Host Name, Port Number, and Oracle Service name option as follows:

 The Host Name is the name assigned to the computer on which we've installed the database,
and we can just leave it at LOCALHOST since we're running it on the computer that has the
database installed.

 The Port Number is the one we assigned to the listener back when we had installed it. It defaults to
the standard 1521.

Determining what port your listener is listening on:

There are a couple of options we have for this. One is to perform the following steps:

 Open a command prompt window and type in the following command:
 C:\>lsnrctl

 This will launch the Listener Control program, which is the command line utility Oracle
provides for controlling the listener. Then enter the following command at the listener control
prompt:

 LSNRCTL> status

 Look for the line that says:
 Listening Endpoints Summary...

 The next line will have the port number listed along with the protocol and host name such as the
following:

(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=computer)(PORT=1521)))

NOTE:We can find information about the second option for determining the port number in the listener
configuration file, listener.ora, in the Oracle home NETWORK\ADMIN directory.

For the Service Name, we will enter the name we assigned to our database during step 3 of the

database creation process. The name we used is ACMEDW.

TYBSC-IT (SEM 6) DATA WAREHOUSING

29

WE-IT TUTORILAS PHNO:8097071144/55

Finding your database instance name:

 There are a number of places where the database name appears on the database server without

us having to log in to the database. One is in the listener control program. Open a command

prompt window and type in the following command: C:\>lsnrctl

 This will launch the Listener Control program. Then enter the following command at the listener

control prompt: LSNRCTL> service

 Another option is to check the name of the Windows service that is started for the database.

The database service name is a part of that name. Open Control Panel | Administrative Tools |

Services.

2. Now that we've determined the connection information for our database, we'll move along to step 2

of Repository Assistant. It asks us what option we'd like to perform of the following:

1. Manage Warehouse Builder workspaces

2. Manage Warehouse Builder workspace users

3. Add display languages to repository

4. Register a Real Application Cluster instance

3. This step asks us what we'd like to do with workspaces: create a new workspace or drop an existing
one. We'll select the first option to create a new workspace.

4. We are presented with two options: to create a new user or to be the owner. To perform the first
option, we will need to specify a database user who has DBA privileges that are required to be able
to create a new user in the database. The second option is to specify an existing database user to
become the owner of the workspace. This user must have the OWB_USER role assigned to be able
to successfully designate it as a workspace owner. That is a database role required of any user who
is to use the Warehouse Builder. If the existing user who is selected does not have that role, then it
must be assigned to the user.

An additional step will be required to specify another user who has the ability to do that
assignment (grant that roll) or has DBA privileges. This second user must have the Admin Option
specified for the OWB_USER role to be able to grant it if he or she does not have DBA privileges.

5. This step will depend on which option we specified in step 4. If we are creating a new user, it will ask

us for an existing user with DBA privileges in the database. The SYSTEM account is the default

provided there, but if we have a different account that is a DBA in the database, we can use that. If

we have specified an existing user in step 4, then step 5 will ask us for the username and password

for that user, as well as the name of the new workspace to create.

6. In this step we specify the new username, password, and workspace name. We'll use acmeowb for

the username and acme_ws for the workspace name.

TYBSC-IT (SEM 6) DATA WAREHOUSING

30

WE-IT TUTORILAS PHNO:8097071144/55

7. This step will ask for the password for the OWBSYS user. This schema was installed for OWB to use

for the repository. The password it's looking for is the one we set up back on the final database

configuration screen at the end of running Database Configuration Assistant to configure the

database. This step will only be required upon first running Repository Assistant to create a new

workspace since it also has to perform the process of initializing the repository in the OWBSYS

schema first. That is a one-time process which is why subsequent runs of Repository Assistant to

manage workspaces, will not require this step.

8. This step asks for tablespace names for the OWBSYS schema. A tablespace is a logical entity in an

Oracle database for storing data. All objects created are assigned to a tablespace, which stores the

data physically in a datafile or datafiles assigned to the tablespace.

9. This step is to select a base language for the repository, so we'll make the appropriate selection.

10. The final step is the optional step 10 to specify any workspace users from existing database users.

The workspace owner is allowed to add and remove database users from the workspace.

The Repository Assistant will present us with a summary screen of the actions it will take and the

information we entered, as shown in the following image:

11. Click on the Finish button and it will begin the installation, presenting us with a scroll bar moving to

the right as it progresses through the installation.

TYBSC-IT (SEM 6) DATA WAREHOUSING

31

WE-IT TUTORILAS PHNO:8097071144/55

2.2 Defining and Importing Source Data Structures

Introduction

To build a useful data warehouse, we have to know what kinds of information our users are going to need

out of the warehouse. To know that, we have to know the following:

 The format in which the data is currently stored and where it is stored.

 Whether there is a transactional database currently in use or not, which supports day-to-day

operations and from which we'll be pulling the data.

 Whether the database is an Oracle database or another vendor's database such as Microsoft

SQL Server.

 Whether there are any flat files of information saved from database tables or other files

that users keep, which might be a source of information

 A flat file is a file in text format that stores data in some kind of delimited format. The

most common example of this kind of file is a CSV file, or a comma-separated file, that

can be saved from a spreadsheet or extracted from a database table. It is called a flat file

because it is in a text-only format and doesn't need to be interpreted by another program

or application to read it.

Preliminary analysis

The analysis will tell us where the data is located, and in what format, so that we can begin to define our

source data structures in the Warehouse Builder.

In our case, we will presume that we have interviewed the management at the ACME Toys and Gizmos

company and they have indicated the following:

 The high-priority information that they would like to see from this data warehouse project is

sales-related data for all their stores.
 They don't have an idea about the comparative sales in the various stores, so they need some

way to view all that data together to do an analysis that shows how well, or poorly, the stores

are doing.
 In the future, they would also like to be able to compare store sales with their web site sales,

but that will not be required for this first data warehouse we build.

ACME Toys and Gizmos source data:

TYBSC-IT (SEM 6) DATA WAREHOUSING

32

WE-IT TUTORILAS PHNO:8097071144/55

Talking to users, administrators, and database administrators in ACME has helped us discover that there

is a transactional system in use (called a Point-of-Sale or POS system).

This system maintains data in a Microsoft SQL Server database named ACME_POS, and tracks

individual sales transactions that occur for all of ACME's toys and gizmos. This database contains

tables that store information about each sale along with all associated sales information such as

the item sold, its price, the store in which it is sold, the register that processes the sale, and the

employee who made the sale.

IT department that runs the web site for ACME Toys and Gizmos has its own database , It

contains tables that store information about:

 The orders taken

 Information about the customer who placed the order

 Information about the individual products that were ordered

This is an example of the source data that might not be needed in the initial stages of a data

warehouse project, but that could be requested by users at a later stage.

The POS transactional source database

The DBA (Database Administrator—the person responsible for the maintenance and administration of

the database) is in charge of the POS transactional database. The DBA has provided an Entity-

Relationship (ER) diagram of the database to help us understand the database and the relationships

between the various tables. The diagram is in the UML (Universal Modeling Language) notation.

The cardinality indicates how the records in one table relate to records in the other. The cardinality can

be expressed as many-to-many, one-to-many, many-to-one, or one-to-one, and is indicated in the

diagram with counts composed of the following:

 0..N—zero or more

 1..N—one or more

 1—one only

TYBSC-IT (SEM 6) DATA WAREHOUSING

33

WE-IT TUTORILAS PHNO:8097071144/55

The main table in the ACME_POS database is the POS_Transactions table. It holds information about

each transaction that takes place in a store, including the cash register that processed the transaction,

the employee who worked the register, the item sold, the quantity sold, and the date.

Not all of that information is stored directly in the POS_Transactions table; only the date and

quantity are stored directly. If all the details about the item were included in every record in the

POS_Transactions table, there would be a large amount of duplicated information.

We can see from the diagram that a separate table was created to hold item information and a link

made from the main POS_Transactions table to the Items table. That link is created via a foreign

key stored in the POS_Transactions table for the Items table. Instead of storing all the information

about the item in the POS_Transactions table, a single column called the foreign key is placed there.

This foreign key has a value corresponding to a value in the primary key column of the Items table.

This concept of storing an item's information in a separate table results in a much greater accuracy of

data, as we don't have to duplicate the item information. It is only entered once in the Item table. If it

has to be updated, there is only one record in the Item table to update, and not thousands of records

in the POS_Transactions table. This is known as database normalization.

There is no direct connection from the POS_Transactions table to the Regions table.

The only way to get the region for a given transaction is to look up the register that processed the

transaction, and then look up the store in which the register is located and that store record will give

you the region. All of this is done with one massive join SQL query to join all these tables together. A

join query is one that pulls data from more than one table at a time. . A join query is one that pulls data

from more than one table at a time. As the database has a normalized structure, we have to include

those two additional tables in our join, which we really don't want, just to get to the information we

want.

TYBSC-IT (SEM 6) DATA WAREHOUSING

34

WE-IT TUTORILAS PHNO:8097071144/55

The web site order management database:

The DBA in charge of the Oracle database for the web site order management system has provided us with its

ER diagram for our information.

This database holds the sales information for the web site. The Orders table is the main table in this

database instead of the POS_Transactions table. It holds information about customers who placed

an order and a list of ordered items. The customer information includes the region in which the

customer is located, and this is identical to the information in the Regions table in the POS

Transactions database. The customer information is stored in a Customers table, which is linked to the

Orders table, and we can see that the Regions table is linked to the Orders table through the

Customers table. The list of ordered items is stored in the Line_Items table, which also has product

information that identifies which product was ordered. The product information is stored in the

Products table (which is similar to the Items table in the POS database). We can see that it has a link

to the Line_Items table in our diagram.

This relationship between tables is accomplished in the database by storing a foreign key to the other

table to indicate the relationship, but there could be any number of line items in an order. This would

mean you will need any number of line item foreign keys stored in the Orders table, but that is not

possible. The reason is that the foreign key in this situation is going the other way. The Line_Items

TYBSC-IT (SEM 6) DATA WAREHOUSING

35

WE-IT TUTORILAS PHNO:8097071144/55

table stores a foreign key to the order of which it is a part of as a line item can be associated with only

one order.

This was a brief overview of the source data structures.

An overview of Warehouse Builder Design Center:

The Design Center is the main graphical interface that we will be using to design our data warehouse, but we

also use it to define our data sources.

We launch Design Center from the Start menu under the Oracle menu entry, as shown in the following

image:

The Design Center must connect to a workspace in our repository. This included the repository in which we

created a workspace and a user, who would be the owner of the workspace. We used the Repository

Assistant application to configure our repository and create that user. The repository is located in the

OWBSYS schema that was the pre-installed schema the database installation provided for us. The user name

chosen was acmeowb and the workspace name was acme_ws. Now it's time to make use of this user and

workspace.

TYBSC-IT (SEM 6) DATA WAREHOUSING

36

WE-IT TUTORILAS PHNO:8097071144/55

 The first time we use this application, the Logon dialog box comes up all blank. But after we fill

in our information for the first time, it will remember the User Name and Connection details on

subsequent executions of the Design Center. Also, it will present us with a smaller version of the

dialog box with just User Name and Password, so that we can just enter the password and don't

have to re-enter the connection details. The button above the connection details that now

displays Hide Details << will display Show Details >>. If we need to change the connection

details in that case or to just see what they are set to, click on the Show Details >> button and it

will display the full dialog box as above.

 The User Name and Password are what we specified in the Repository Assistant for the

workspace owner, and the Connection details are the Host, Port, and Service Name we

specified when we used the Database Configuration Assistant to create our database. We'll

enter acmeowb as the user name and acmedw as the service name.

Use the Workspace Management button to invoke Repository Assistant from the Design

Center Logon dialog box.

The main Design Center window will be displayed next upon a successful log on. An example is shown in the

following image, which depicts the default appearance of the Design Center with the entries expanded in the

Project Explorer and Connection Explorer windows:

TYBSC-IT (SEM 6) DATA WAREHOUSING

37

WE-IT TUTORILAS PHNO:8097071144/55

A project called MY_PROJECT appears, which is the default project that the Warehouse Builder will

create in every workspace.

The three windows in the main Design Center screen. They are as follows:

 Project Explorer

 Connection Explorer

 Global Explorer

The Project Explorer window is where we will work on the objects that we are going to design for our

data warehouse. It has nodes for each of the design objects we'll be able to create.

To design an object under the Databases node to model that source database. If we expand the

Databases node in the tree, we will notice that it includes both Oracle and Non-Oracle databases.

pulling data from a flat file, in which case we would define an object under the Files node. If our

organization was running one of the applications listed under the Applications node (which includes

Oracle E-Business Suite, PeopleSoft, Siebel, or SAP) and we wanted to pull data from it, we'd design an

object under the Applications node.

TYBSC-IT (SEM 6) DATA WAREHOUSING

38

WE-IT TUTORILAS PHNO:8097071144/55

The Project Explorer isn't just for defining our source data, it also holds information about targets. So

the Project Explorer defines both the sources of our data and the targets, but we also need to define

how to connect to them. This is what the Connection Explorer is for.

The Connection Explorer is where the connections are defined to our various objects in the Project

Explorer. The workspace has to know how to connect to the various databases, files, and applications

we may have defined in our Project Explorer. As we begin creating modules in the Project Explorer, it

will ask for connection information and this information will be stored and be accessible from the

Connection Explorer window. Connection information can also be created explicitly from within the

Connection Explorer.

The Global Explorer is used to manage these objects. It includes objects such as Public Transformations

or Public Data Rules. A transformation is a function, procedure, or package defined in the database in

Oracle's procedural SQL language called PL/SQL. Data rules are rules that can be implemented to

enforce certain formats in our data.

Importing/defining source metadata

Metadata is data that describes our data. We are going to tell the Warehouse Builder what our source

data looks like and where it is located, so that it can build the code necessary to retrieve that data when

we design and run mappings to populate our data warehouse. The metadata is represented in the

Warehouse Builder as objects corresponding to the type of the source object.

We can manually input the definitions into Design Center Project Explorer ourselves, or we can choose

to have the Warehouse Builder automatically import the descriptions of our data for us.

Creating a project:

The very first thing we have to do in Design Center is make sure we have a project defined that will hold

all of our work. Launch the Design Center now if you haven't already and we'll start working with it.

right-click on the project name in the Project Explorer and select Rename from the resulting pop-up

menu. Alternatively, we can select the project name, then click on the Edit menu entry, and then on

Rename. In either case, the name will be highlighted and turned to italics and we'll be able to use the

keyboard to type a new name.

If we wanted to create a new project, we would select New... either from the pop-up menu or from the

Design drop-down menu.

Creating a module:

TYBSC-IT (SEM 6) DATA WAREHOUSING

39

WE-IT TUTORILAS PHNO:8097071144/55

 A module is an object in the Design Center that acts as a storage location for the various

definitions and helps us logically group them

 There are Files modules that contain file definitions and Databases modules that contain the

database definitions. These Databases modules are organized as Oracle modules and Non-

Oracle modules.

 Those are the main modules we're going to be concerned with here. We have to create an

Oracle module for the ACME_WS_ORDERS database for the web site orders, and a non-Oracle

module for the ACME_POS SQL Server database.

Creating an Oracle Database module:

To create an Oracle Database module, right-click on the Databases | Oracle node in the Project

Explorer of Warehouse Builder and select New... from the pop-up menu. The first screen that will

appear is the Welcome screen, so just click on the Next button to continue. Then we have the following

two steps:

1. In this step we give our new module a name, a status, and a description that is optional. We do the

following in this step:

 On the next window after the Welcome screen, type in a name for the module.The name

should reflect the name of the source database for consistency and ease of matching the

module to the source database later.

 The module status is a way of associating our module with a particular phase of the process,

and we'll leave it at Development

 For the description, just enter any text that helps describe the source.

 We also have to indicate the module type—whether it is for a data source or a warehouse

target. As this is an Oracle database module, we can select either one.

TYBSC-IT (SEM 6) DATA WAREHOUSING

40

WE-IT TUTORILAS PHNO:8097071144/55

Data Source and our screen should now look similar to the following:

Click on the Next button to proceed to defining the connection.

In this step, we define the connection information for Warehouse Builder so that it knows how to

connect to the source. We do that in the next screen using the following steps:

1. The screen starts by suggesting a connection name based on the name we gave the module. Click on

the Edit button beside the Name field to fill in the details. This will display the following screen:

TYBSC-IT (SEM 6) DATA WAREHOUSING

41

WE-IT TUTORILAS PHNO:8097071144/55

2. For the connection details, we're going to enter User Name, acme_ws_orders, and the Password

that was given to us by the DBA for the web site orders system. When we type in the username and

move to the next field, the schema field will be automatically populated with the username.

3. Enter the Host where the Oracle database resides and contains the acme_ws_orders schema,

which is localhost as we're running everything on one system.

4. The Port that the listener is listening on is 1521 so leave it as the default. Enter acmedw as the

Service Name for the Oracle database.

5. One final step is to make sure the version of the Oracle database is set correctly.

6. Press the Test Connection button and if everything is OK.

7. Click on the OK button to proceed, even if an error was reported when we clicked on the Test

Connection button. Now we will be back at the Step 2 window where all the connection results will

be filled in.

8. The Import after finish checkbox will be checked by default. But we're going to uncheck it because

we're going to move on and create a module for the SQL Server database before we import any

metadata. So, uncheck the box and click on the Finish button.

TYBSC-IT (SEM 6) DATA WAREHOUSING

42

WE-IT TUTORILAS PHNO:8097071144/55

It has added our new module under the Databases | Oracle node in the Project Explorer. If we expand

the Locations | Databases | Oracle module in the Connection Explorer, we'll see our location

ACME_WS_ORDERS_LOCATION listed as shown in the following image.

Creating a SQL Server database module:

In the following image, a number of databases are listed, including the one that says just ODBC:

The POS transactional database is a Microsoft SQL Server database and we'll notice that it is one of the

databases listed by name under the Non-Oracle databases.

Oracle makes use of Oracle Heterogeneous Services to make connections to other databases. This is a

feature that makes a non-Oracle database appear as a remote Oracle database server.

 There are two components to make this work—the heterogeneous service that comes by default with

the Oracle database and a separate agent that runs independently of the database. The agent facilitates

the communication with the external non-Oracle database. That agent can take one of these two forms:

 A transparent gateway agent that is tailored specifically to the database being accessed.

 A generic connectivity agent that is included with the Oracle Database and which can be used

for any external database.

TYBSC-IT (SEM 6) DATA WAREHOUSING

43

WE-IT TUTORILAS PHNO:8097071144/55

The transparent gateway agents must be purchased and installed separately from the Oracle Database,

and then configured to support the communication with the external database.

It is a low-end solution that makes use of ODBC or OLE-DB drivers for accessing the external database.

ODBC (Open Database Connectivity) is a standard interface for accessing database systems and is

platform and database independent. OLE-DB (Object Linking and Embedding-Database) is a Microsoft-

provided programming interface that extends the capability provided by ODBC to add support for other

types of non-relational data stores that do not implement SQL such as spreadsheets.

There is a significant differences between transparent gateways and the generic connectivity agent. The

generic connectivity agent is restricted to the features of ODBC or OLE-DB and is very generic as a result.

Transparent gateways are specifically tailored to the non-Oracle database and support a much wider

range of database access features.

One of the benefits of Oracle Heterogeneous Services is that it allows us to make use of a non-Oracle

database as if it were an Oracle database.

TYBSC-IT (SEM 6) DATA WAREHOUSING

44

WE-IT TUTORILAS PHNO:8097071144/55

The generic connectivity agent is limited in some of the features it allows when accessing another non-

Oracle database, and this factor may depend on whether we need these features or not.

The agent we choose will determine which of the nodes under the Databases | Non-Oracle node will be

used to create our SQL Server database module.

the module will be created under the Databases | Non-Oracle node in the Warehouse Builder and not

under the Databases | Oracle node as it is not an Oracle database. Expanding the Databases node and

then the Non-Oracle node as shown in the previous image, we see that there is an ODBC node available.

It is under this node that we will create our module for the source definitions for the POS transactional

database.

Creating a SQL Server database connection:

The first step that is required in making use of Oracle Heterogeneous Services to access a non-Oracle

database using the generic connectivity agent is to create an ODBC connection.

by setting up a system DSN (Data Source Name). A DSN is the name you give to an ODBC connection. An

ODBC connection defines which driver to use and other physical connection details that are needed to

make a connection to a database. On Microsoft Windows, we configure DSNs in the ODBC Data Source

Administrator. The following are the steps for configuring DSN:

 You can access this application by navigating through the Start | Control Panel | Administrative

Tools menu. The application is called Data Sources (ODBC).

 In ODBC Data Source Administrator, click on the System DSN tab, and then click on the Add

button to add a new system DSN.

 The first screen asks you to select which driver you want to use for your data source. ODBC

drivers are specific to a database, so you have to use the one that is defined for accessing a SQL

Server database. Scroll down the list until you see the SQL Server entry and click on it. Now click

on the Finish button.

This will take you to the screens that create an ODBC data source for connecting to SQL Server. Each

ODBC driver requires a different configuration depending on the database it is connecting to.

 For SQL Server, the first screen will ask you for a Name, Description, and the host on which the

SQL Server database is located.

 let's name our DSN ACME_POS after the database, enter Data Source for connecting to the

ACME POS database for the description, and localhost\SqlExpress for the hostname in the

Server field.

Click on the Next button to proceed.

TYBSC-IT (SEM 6) DATA WAREHOUSING

45

WE-IT TUTORILAS PHNO:8097071144/55

Notice \SqlExpress at the end of the hostname. This is required because SQL Express is installed as what

is called a named instance, which basically requires that the name be included with the hostname for it

to be found successfully.

 We have two options here. We can use Windows NT Authentication using the network login

ID. (SQL Server will use the network or local machine login ID of the user connected at that

time.) Alternatively, we can use SQL Server authentication using a login ID and password

provided to us.

 There is a checkbox at the bottom of the screen to check off and have the new data source

wizard connect to the SQL Server to obtain additional information. We are going to check that

box if it is not checked by default, and enter the username and password provided by the

ACME_POS DBA

An important item to note here is that this username and password are used only by the DSN creation

application to access the database for some additional configuration items during the DSN setup

process. This username and password will not be used by any application that subsequently uses our

ODBC DSN to connect to the SQL Server.

 click on Next to continue:

 the primary item we want to verify is whether the default database is listed as ACME_POS so

that when we use the ODBC connection it is connected to the correct database.

TYBSC-IT (SEM 6) DATA WAREHOUSING

46

WE-IT TUTORILAS PHNO:8097071144/55

 Leave all the other options set as they are and click on the Next button to continue.

 click on the Finish button to complete the process.

 we can test the newly created data source right here. If we click on the Test Data Source...

button, it will make a connection to the database and return a screen indicating success or

failure. Click on the OK button on this screen and the ODBC connection will be created. It will

now appear on the System DSN tab of the ODBC Data Source Administrator.

Configure Oracle to connect to SQL Server:

Oracle Heterogeneous Services to connect to our SQL Server database. We will configure Oracle now

that we have our ODBC connection created. The following are the two steps involved here:

 Create a heterogeneous service configuration file.

 Edit the listener.ora file

Creating a heterogeneous service configuration file:

We will be creating a heterogeneous service configuration file in the ORACLE_HOME\hs\admin folder.

Just substitute your applicable ORACLE_HOME location. The following are the steps to create this file:

 Open Windows Explorer and navigate to this folder.

There is a sample init file that Oracle has been kind enough to supply us with. We can easily modify this

file to suit our purpose. It is a plain-text file, so we can use any text editor to edit it.

 Let's open the file named initdg4odbc.ora in our favorite text editor, or Windows Notepad if we

don't have any other text editor.

This is the default init file for using ODBC connections.

The contents will basically look like the following:

This is a sample agent init file that contains the HS parameters #that are needed for the Database

Gateway for ODBC

HS init parameters

HS_FDS_CONNECT_INFO = <odbc data_source_name>

HS_FDS_TRACE_LEVEL = <trace_level>

Environment variables required for the non-Oracle system

#set <envvar>=<value>

TYBSC-IT (SEM 6) DATA WAREHOUSING

47

WE-IT TUTORILAS PHNO:8097071144/55

The lines that begin with # are comment lines and will be ignored.

 The HS_FDS_CONNECT_INFO line is where we specify the ODBC DSN that we just created in

the previous section. So replace the <odbc data_source_name> string with the name of the

Data Source, which is (unless you changed it from what was suggested) ACME_POS.

 The HS_FDS_TRACE_LEVEL line is for setting a trace level for the connection. The trace level

determines how much detail gets logged by the service and it is OK to set the default as 0 (zero).

 Now we will save the file with a new name and will be careful not to overwrite the default file.

We'll give it a name that begins with init and ends with .ora, and contains a name in the

middle that is descriptive and does not contain spaces or special characters.

Editing the listener.ora file:

The steps for this are:

Load the listener.ora file into a text editor (or Notepad). Add the following lines to the file:

SID_LIST_LISTENER=

(SID_LIST=

(SID_DESC=

(SID_NAME=acmepos)

(ORACLE_HOME=D:\app\bob\product\11.1.0\db_1)

(PROGRAM=dg4odbc)

))

For SID_NAME, we have to specify the name we used as part of the name of our init file in the previous

step. This is why no special characters were allowed because this name will become the SID for our

database connection and SIDs cannot have special characters. However, don't include the init or .ora

from the name of this file.

Creating the Warehouse Builder ODBC module for SQL Server:

The steps to create an ODBC module and location in Warehouse Builder are:

 Right-click on the ODBC node in the Project Explorer of Design Center, and select New... from

the pop-up menu. The first screen that will appear is the Welcome screen, so just click on the

Next button to continue.

 The screen with the label Step 1 is where we provide a name as we did for the Oracle module.

 We'll leave module status set to Development.

TYBSC-IT (SEM 6) DATA WAREHOUSING

48

WE-IT TUTORILAS PHNO:8097071144/55

 One difference we'll see from the Step 1 screen earlier for an Oracle module is that there is no

option to choose the type of module. It is a Data Source module by default. Click on the Next

button to proceed to defining the connection.

 The next screen labeled Step 2 is for the connection just as earlier. We'll click on the Edit button

beside the name to fill in the details. This will display the following screen:

 For the connection details, we will enter the User Name as "acme_dw_user", and Password,

which was given to us by the DBA for the transactional system.

 Enter the Host where the Oracle database resides and where we configured the heterogeneous

services. It is localhost as we're running everything on the same system.

 The Port the listener is listening on is 1521, so leave it as the default. Enter the Service Name

that we configured in the previous section in the listener for the generic connectivity dg4odbc

agent—acmepos.

TYBSC-IT (SEM 6) DATA WAREHOUSING

49

WE-IT TUTORILAS PHNO:8097071144/55

 Finally, enter the schema we'll be connecting to. For SQL Server, the owner of most databases is

referred to internally as DBO and so this is what we're going to put here.

 We can click on the Test Connection button to make sure everything is working properly and the

results will be displayed in the Test Results field.

 Click on the OK button to proceed even if there was an error reported when we clicked on the

Test Connection button.

 The Import after finish checkbox will be checked by default.

 click on the Finish button.

There is a known bug in the ODBC gateway module code that heterogeneous services use to

communicate with non-Oracle systems using ODBC. This bug should be fixed in the next release of the

database as it can cause the location Connection Test feature and the metadata import feature to fail.

Warehouse Builder interface and we can see that it has added our new module (ACME_POS) under

Databases | Non-Oracle in the Project Explorer. In the Connection Explorer, if we expand the Locations |

Databases | Non-Oracle | ODBC node or module, we'll see ACME_POS_LOCATION.

Importing source metadata from a database:

 We are going to begin by right-clicking on the ACME_WS_ORDERS module name under the

Databases | Oracle node in the Project Explorer and selecting Import... from the pop-up menu.

 We will then be presented with the Import Metadata Wizard.

 Click on the Next button on the Welcome screen and we'll be presented with a screen labeled

Step 1 of the process where we choose what to import.

 Click on Next to move on to Step 2:

 Click on the plus sign beside the Tables entry to see the complete list of tables to choose from.

 We'll click on the Next button to proceed to the Summary and Import page where it will

summarize the selections we've made and tell us the action it is going to take for each

selection—whether to create or re-import the object. There is also an Advanced Import

Options...

 click on the Finish button, which will begin the import process.

 During the import, a status dialog box will be displayed showing the progress of the import as

each object is imported.

TYBSC-IT (SEM 6) DATA WAREHOUSING

50

WE-IT TUTORILAS PHNO:8097071144/55

The other buttons you have on this screen are:

 A Save button which will allow us to save an MDL file of the activity we just accomplished. An

MDL is a file the Warehouse Builder can save that contains information from the model that can

be imported later. We can use it to transfer model information between databases if we have

more than one, or we can use it as a backup.

 An Undo button that we could click on at this point to cancel the import. The Import Metadata

Wizard has not actually saved any information to the database yet, so clicking on the Undo

button.

 The OK button will save the changes to the module in Project Explorer from which we

performed the import.

 In this case, clicking on OK is going to save the imported tables in the ACME_WS_ORDERS

module that we created under the Databases | Oracle node. We can verify this by going back to

the Project Explorer window

List of some of the key differences for reference:

 The screen labeled Step 1 that is used for choosing objects to import will be restricted to only

tables and views

 The screen labeled Step 1 that is used for choosing objects to import will be restricted to only

tables and views

 select Design | Save All from the toolbar menu of the Design Center application.

Defining source metadata manually with the Data Object

Editor:

The steps to manually define the source metadata using Data Object Editor are:

To start building our source tables for the POS transactional SQL Server database, let's launch the OWB

Design Center if it's not already running. Expand the ACME_DW_PROJECT node.

 Navigate to the Databases | Non-Oracle | ODBC node, and then select the ACME_POS module under

this node. We will create our source tables under the Tables node, so let's right-click on this node and

select New, from the pop-up menu.

 Upon selecting New, we are presented with the Data Object Editor screen.

The fields to be edited in this Data Object Editor are as follows:

TYBSC-IT (SEM 6) DATA WAREHOUSING

51

WE-IT TUTORILAS PHNO:8097071144/55

 The first tab it presents to us is the Name tab where we'll give a name to the first table we're

creating.

 Let's click on the Columns tab next and enter the information that describes the columns of the

Items table.

The following will be the columns, types, and sizes we'll use for the Items table based on what we

found in the Items source table in the POS. transaction database:

ITEMS_KEY number(22)

ITEM_NAME varchar2(50)

ITEM_CATEGORY varchar2(50)

ITEM_VENDOR number(22)

ITEM_SKU varchar2(50)

ITEM_BRAND varchar2(50)

ITEM_LIST_PRICE number(6,2)

ITEM_DEPT varchar2(50)

Precision and scale of numbers
Properties of number data types can include a precision and scale. Oracle allows a number data type

to be specified without indicating a specific precision and scale. Precision indicates the maximum

number of digits the number can contain, and scale indicates the number of decimal places to the right

of the decimal. If we don't specify them, Oracle Database will accept a number of any precision and

scale as long as the number doesn't fall outside the range allowed, which is between 1.0 x 10-130 and 1.0 x

10126. We would specify a precision and scale to enforce greater data integrity in the database. For

example, if we enter a number that has more digits than the specified precision, it will generate an error

even though the number might still fall in the acceptable range

 We can save our work at this point and close the Data Object Editor window now before

proceeding. So we'll select Diagram | Save All from the toolbar menu of the Data Object Editor,

or press the Ctrl + S key combination to save our work. We exit from the Data Object Editor by

selecting Diagram | Close Window from Data Object Editor.

The column information for each of them is provided here for reference and help in creating the

corresponding tables in the Warehouse Builder:

POS_TRANSACTIONS

 POS_TRANS_KEY number(22)

 SALES_QUANTITY number(22)

 SALES_ASSOCIATE number(22)

 REGISTER number(22)

TYBSC-IT (SEM 6) DATA WAREHOUSING

52

WE-IT TUTORILAS PHNO:8097071144/55

 ITEM_SOLD number(22)

 DATE_SOLD date

 AMOUNT number(10,2)

REGISTERS

 REGISTERS_KEY number(22)

 REGISTER_MANUFACTURER varchar2(60)

 MODEL varchar2(50)

 LOCATION number(22)

 SERIAL_NO varchar2(50)

STORES

 STORES_KEY number(22)

 STORE_NAME varchar2(50)

 STORE_ADDRESS1 varchar2(60)

 STORE_ADDRESS2 varchar2(60)

 STORE_CITY varchar2(50)

 STORE_STATE varchar2(50)

 STORE_ZIP varchar2(50)

 REGION_LOCATED_IN number(22)

 STORE_NUMBER varchar2(10)

TYBSC-IT (SEM 6) DATA WAREHOUSING

53

WE-IT TUTORILAS PHNO:8097071144/55

UNIT 3

3.1 Designing the Target Structure
We have our entire source structures defined in the Warehouse Builder. But before we can do anything

with them, we need to design what our target data warehouse structure is going to look like. When we

have that figured out, we can start mapping data from the source to the target. So, let's design our

target structure.

Data warehouse design
When it comes to the design of a data warehouse, there is basically one option that makes the most

sense for how we will structure our database and that is the dimensional model. This is a way of looking

at the data from a business perspective that makes the data simple, understandable, and easy to query

for the business end user. It doesn't require a database administrator to be able to retrieve data from it.

A normalized model removes redundancies in data by storing information in discrete tables, and then

referencing those tables when needed. This has an advantage for a transactional system because

information needs to be entered at only one place in the database, without duplicating any information

already entered.

In the table, all details regarding the information to identify the register, the item information, and the

employee who processed the transaction do not need to be entered because that information is already

stored in separate tables. The main transaction record just needs to be entered with references to all

that other information.

This works extremely well for a transactional type of system concerned with daily operational processing

where the focus is on getting data into the system. However, it does not work well for a data warehouse

whose focus is on getting data out of the system. Therefore, dimensional models were introduced to

provide the end user with a flattened structure of easily queried tables that he or she can understand

from a business perspective.

Dimensional design

A dimensional model takes the business rules of our organization and represents them in the database

in a more understandable way. A dimensional model removes the complexity and represents the data in

a way that end users can relate to it more easily from a business perspective.

TYBSC-IT (SEM 6) DATA WAREHOUSING

54

WE-IT TUTORILAS PHNO:8097071144/55

Users can intuitively think of the data for the above question as a cube, and the edges (or dimensions) of

the cube labeled as stores, products, and time frame.

Cube and dimensions

The dimensions become the business characteristics about the sales, for example:

• A time dimension—users can look back in time and check various time periods

• A store dimension—information can be retrieved by store and location

• A product dimension—various products for sale can be broken out

Think of the dimensions as the edges of a cube, and the intersection of the dimensions as the measure

we are interested in for that particular combination of time, store, and product.

Think of the width of the cube, or a row going across, as the product dimension. Every piece of

information or measure in the same row refers to the same product, so there are as many rows in the

cube as there are products. Think of the height of the cube, or a column going up and down, as the store

dimension. Every piece of information in a column represents one single store, so there are as many

columns as there are stores. Finally, think of the depth of the cube as the time dimension, so any piece

of information in the rows and columns at the same depth represent the same point in time. The

intersection of each of these three dimensions locates a single individual cube in the big cube, and that

represents the measure amount we're interested in. In this case, it's dollar sales for a single product in a

single store at a single point in time.

TYBSC-IT (SEM 6) DATA WAREHOUSING

55

WE-IT TUTORILAS PHNO:8097071144/55

The concept of cubes within cubes was just to provide a way to visualize further dimensions. We just

model our main cube, add as many dimensions as we need to describe the measures, and leave it for

the implementation to handle.

This is a very intuitive way for users to look at the design of the data warehouse. When it's implemented

in a database, it becomes easy for users to query the information from it.

Implementation of a dimensional model in a database

There are two options: a relational implementation and a multidimensional implementation.

The relational implementation, which is the most common for a data warehouse structure, is

implemented in the database with tables and foreign keys.

The multidimensional implementation requires a special feature in a database that allows defining cubes

directly as objects in the database.

Relational implementation (star schema)

The diagrams presented showed all the tables interconnected, and we discussed the use of foreign keys

in a table to refer to a row in another table. That is fundamentally a relational database. The term

relational is used because the tables in it relate to each other in some way. For a relational data

warehouse design, the relational characteristics are retained between tables.

It's much faster and easier to understand if we don't have to include multiple levels of referenced tables.

For this reason, a data warehouse dimensional design that is represented relationally in the database

will have one main table to hold the primary facts, or measures we want to store, such as count of items

sold or dollar amount of sales.

The important principle here is that these tables that are referenced by the main table contain all the

information they need and do not need to go down any more levels to further reference any other

tables.

The ER diagram of such an implementation would be shaped somewhat like a star, and thus the term

star schema is used to refer to this kind of an implementation. The main table in the middle is referred

to as the fact table because it holds the facts, or measures that we are interested in about our

organization.

The tables surrounding the fact table are known as dimension tables. These are the dimensions of our

cube. These tables contain descriptive information, which places the facts in a context that makes them

understandable.

It is the job of data warehouse design to determine what pieces of information need to be included.

TYBSC-IT (SEM 6) DATA WAREHOUSING

56

WE-IT TUTORILAS PHNO:8097071144/55

For a data warehouse, however, the query time and simplicity is of paramount importance over the

duplication of data. As for the data accuracy, it's a read-only database so we can take care of that up

front when we load the data. For these reasons, we will want to include all the information we need

right in the dimension tables, rather than create further levels of foreign key references. This is the

opposite of normalization, and thus the term de-normalized is used.

However, in our data warehouse, we would include that department information, description and all,

right in the product dimension. This will result in the same information being duplicated for each

product in the department. What that buys us is a simpler structure that is easier to query and more

efficient for retrieving information from, which is key to data warehouse usability.

This is a variation of the star schema referred to as a snowflake schema because with this type of

implementation, dimension tables are partially normalized to pull common data out into secondary

dimension tables. The resulting schema diagram looks somewhat like a snowflake. The secondary

dimension tables are the tips of the snowflake hanging off the main dimension tables in a star schema. A

snowflake dimension table is really not recommended in most cases because of ease-of-use and

performance considerations, but can be used in very limited circumstances.

Multidimensional implementation (OLAP)

A multidimensional implementation or OLAP (online analytic or analytical processing) requires a

database with special features that allow it to store cubes as actual objects in the database, and not just

tables that are used to represent a cube and dimensions. It also provides advanced calculation and

analytic content built into the database to facilitate advanced analytic querying.

The Oracle Database Enterprise Edition has an additional feature that can be licensed called OLAP that

embeds a full-featured OLAP server directly in an Oracle database. This is an option organizations can

leverage to make use of their existing database. These kinds of analytic databases are well suited to

TYBSC-IT (SEM 6) DATA WAREHOUSING

57

WE-IT TUTORILAS PHNO:8097071144/55

providing the end user with increased capability to perform highly optimized analytical queries of

information. Therefore, they are quite frequently utilized to build a highly specialized data mart, or a

subset of the data warehouse, for a particular user community. The data mart then draws its data to

load from the main data warehouse, which would be a relational dimensional star schema. A data

warehouse implementation may contain any number of these smaller subset data marts.

Designing the ACME data warehouse

Identifying the dimensions

We used that to illustrate the cube concept and to show a star schema representation of it, so the

information shows us the dimensions we need. Since management is concerned with daily sales, we

need some kind of date/time dimension that will provide us the context for the sales data indicating

what day the sale transaction took place.

Also, the implementation of the time dimension in OWB does not include the time of day since it would

have to include 24 hours of time values for each day represented in the dimension due to the way it

implements the dimension.

Another dimension we have included is to model the product information. Each sale transaction is for a

particular product, and management has indicated they are concerned about seeing how well each

product is selling. So we will include a dimension that we shall call Product. At a minimum we need the

product name, a description of the product, and the cost of the product as attributes of our product

dimension—so we'll include those in our logical model. Unless we include some kind of a location

dimension, they will not be able to tell that. That is why we have included a third dimension called Store.

It is used to maintain the information about the store that processed the sales transaction. For

attributes of the store dimension, we can include the store name and address at a minimum to identify

each store. These dimensions should be enough to satisfy the management's need for querying

information for this particular business process—the daily sales.

Designing the cube

A very important topic to consider at this point is what will be the grain of the measure—the sales

data—that we're going to store in our cube? The grain (or granularity) is the level that the sales number

refers to.

Since we're using sales as the measure, we'll store a sales number; and from our dimensions, we can see

that it will be for a given date in a given store and for a given product. Will that number be the total of

all the sales for that product for that day? Yes, so it satisfies our design criteria of providing daily sales

volume for each product. That is the smallest and lowest level of sales data we want to store. This is

what we mean by the grain or granularity of the data.

TYBSC-IT (SEM 6) DATA WAREHOUSING

58

WE-IT TUTORILAS PHNO:8097071144/55

Levels/hierarchies

A dimensional model is naturally able to handle this concept of the different levels of data by being able to model a

hierarchy within a dimension. The time/date dimension is an easy example of using of various levels.

We have found out that the POS Transactional system also maintains the count of the number of a

particular item sold in the transaction. This is an additional measure we will consider storing in our cube

also, since we can see that it is at the same grain as the total sales. The count of items would still pertain

to that single transaction just like the sales amount, and can be captured for each product, store, and

even date.

The only other pieces of information our cube is going to contain are pointers to the dimensions. In the

relational model, the fact table would contain columns for the dollar amount, the quantity, the unit cost,

and then foreign keys for each of the dimension tables.

Data warehouse design in OWB

The Warehouse Builder contains a number of objects, which we can use in designing our data

warehouse, that are either relational or dimensional. OWB currently supports designing a target schema

only in an Oracle database, and so we will find the objects all under the Oracle node in the Project

Explorer. Let's launch Design Center now and have a look at it. But before we can see any objects, we

have to have an Oracle module defined to contain the objects. ACME web site orders database—

ACME_WS_ORDERS.

TYBSC-IT (SEM 6) DATA WAREHOUSING

59

WE-IT TUTORILAS PHNO:8097071144/55

we created the acmeowb user as the repository owner and mentioned that this user can be a deployment

target for our data warehouse. However, it does not have to be the target user. It's a good idea to create a

separate user schema to become the target so that user roles in our database can be kept separate. Using

the OWB repository owner schema would mean our target data warehouse would have to be on the same

database server as our repository.

Create a target user

There are a couple of ways we can go about creating our target user—create the user directly in the

database and then add to OWB, or use OWB to physically create the user. If we have to create a new

user, and if it's on the same database as our repository and workspaces, it's a good idea to use OWB to

create the user, especially if we are not that familiar with the SQL command to create a user. One of

those object types is a Users object that exists under the Security node as shown here:

TYBSC-IT (SEM 6) DATA WAREHOUSING

60

WE-IT TUTORILAS PHNO:8097071144/55

Right-click on the Users node and select New... to launch the Create User dialog box as shown here:

TYBSC-IT (SEM 6) DATA WAREHOUSING

61

WE-IT TUTORILAS PHNO:8097071144/55

We create a workspace user by selecting a database user that already exists or create a new one in the

database. If we already had a target user created in the database, this is where we would select it. We're

going to click on the Create DB User... button to create a new database user.

We need to enter the system username and password as we need a user with DBA privileges in the

database to be able to create a database user. We then enter a username and password for our new

user. As we like to keep things basic, we'll call our new user ACME_DWH, for the ACME data warehouse.

The new user will be created when you click on the OK button, and will appear in the righthand window of

the Create User dialog already selected for us. Click on the OK button and the user will be registered with the

workspace, and we'll see the new username if we expand the Users node under Security in the Global

Explorer. We can continue with creating our target module now that we have a user defined in the database

to map to.

Create a target module

We'll follow the same steps as we did in the last chapter where we created the ACME_WS_ORDERS

module. Right-click on the Oracle object under Databases and select New... from the pop-up menu to

launch the Create Module Wizard and step through the process. We'll name this module ACME_DWH for

ACME Data Warehouse. But in real-world situations, it will likely be in a different database on a different

server. If we had created a target user schema on a different database, this is the point at which we

TYBSC-IT (SEM 6) DATA WAREHOUSING

62

WE-IT TUTORILAS PHNO:8097071144/55

would be able to enter the connection information for that user in order to associate our target module

with that user and make it a target.

Now that we have our target database schema and a target module defined, which is associated with a

location pointing to that target schema, we will now have two Oracle modules under our Oracle object

in Project Explorer. First, let's make sure we save our work so far by using the Ctrl+S key combination or

by selecting Design | Save All from the main menu.

TYBSC-IT (SEM 6) DATA WAREHOUSING

63

WE-IT TUTORILAS PHNO:8097071144/55

OWB design objects

There are objects that are relational such as Tables, Views, Materialized Views, and Sequences. Also,

there are dimensional objects such as Cubes and Dimensions. We just discussed relational objects

versus dimensional objects. We have decided to model our database dimensionally and this will dictate

the objects we create. Most data warehouse implementations we encounter will use a dimensional

design. It just makes more sense for matching the business rules the users are familiar with and

providing the types of information the user community will want to extract from the database.

The Warehouse Builder can help us tremendously with that because it has the ability to design the

objects logically using cubes and dimensions in a dimensional design. It also has the ability to implement

them physically in the underlying database as either a relational structure or a dimensional structure

simply by checking a box. To be able to implement the design physically as a dimensional

implementation with cubes and dimensions, we need a database that is designed specifically to support

OLAP

For a relational implementation, the Warehouse Builder actually provides us two options for

implementing the database: a pure relational option and the relational OLAP option. We could take

advantage of the relational implementation of the database for handling large volumes of data, and still

implement a query or reporting tool such as Oracle Discoverer to access the data that made use of the

OLAP features.

The benefit is that the same dimensional design can be implemented at a later time in an OLAP database

just by changing a single setting. There are features of the Warehouse Builder for handling dimensional

features automatically for us, such as levels, surrogate keys, and slowly changing dimensions (all of

which we'll talk about later) that designing dimensionally provides us.

TYBSC-IT (SEM 6) DATA WAREHOUSING

64

WE-IT TUTORILAS PHNO:8097071144/55

This provides us with flexibility and it is the way we are going to proceed with our design. We'll design

dimensionally using a cube and dimensions, and then can implement it either relationally or

dimensionally when we're ready.

TYBSC-IT (SEM 6) DATA WAREHOUSING

65

WE-IT TUTORILAS PHNO:8097071144/55

3.2 Creating the Target Structure in
OWB
Now it's time to actually start creating objects in the Warehouse Builder for our target structure. We'll

create the objects using the wizards that the Warehouse Builder provides for us to simplify the task of

building cubes and dimensions.

Creating dimensions in OWB
The Warehouse Builder provides a couple of ways to create a dimension. One way is to use the wizards

that it provides, which will automatically create a dimension for us. The other way is to manually create

it. We have identified three dimensions that we are going to need—a Date dimension, a Product

dimension, and a Store dimension. The Date dimension, as we've seen, is our time/date dimension for

providing a time series for our data. That kind of dimension is common to most data warehouses and

the information it contains is very similar from warehouse to warehouse. So, recognizing this

commonality, the Warehouse Builder provides us a special wizard to use just for time dimensions.

The Time dimension
A Time dimension is a key part of most data warehouses. It provides the time series information to

describe our data. A key feature of data warehouses is being able to analyze data from several time

periods and compare results between them. The Time dimension is what provides us the means to

retrieve data by time period. We are using it because the Warehouse Builder uses the word Time for this

type of dimension to signify a time period. So when referring to a Time dimension here, we will be

talking about our time period dimension that we will be using to store the date. We will give the name

Date to be clear about what information it contains.

Every dimension, whether time or not, has four characteristics that have to be defined in OWB:

•

•

•

 • Hierarchies

The Levels are for defining the levels where aggregations will occur, or to which data can be summed.

We must have at least two levels in our Time dimension. While reporting on data from our data

warehouse, users will want to see totals summed up by certain time periods such as per day, per month,

or per year. These become the levels. A multidimensional implementation includes metadata to enable

aggregations automatically at those levels, if we use the OLAP feature. The relational implementation

TYBSC-IT (SEM 6) DATA WAREHOUSING

66

WE-IT TUTORILAS PHNO:8097071144/55

can make use of those levels in queries to sum the data. The Warehouse Builder has the following Levels

available for the Time dimension:

 Day

 Fiscal week

 Calendar week

 Fiscal month

 Calendar month

 Fiscal quarter

 Calendar quarter

 Fiscal year

 Calendar year

The Dimension Attributes are individual pieces of information we're going to store in the dimension that

can be found at more than one level. Each level will have an ID that identifies that level, a start and an

end date for the time period represented at that level, a time span that indicates the number of days in

the period, and a description of the level.

Each level has Level Attributes associated with it that provide descriptive information about the value in

that level. The dimension attributes found at that level and additional attributes specific to the level are

included.

We must also define at least one Hierarchy for our Time dimension. A hierarchy is a structure in our

dimension that is composed of certain levels in order; there can be one or more hierarchies in a

dimension. Calendar month, calendar quarter, and calendar year can be a hierarchy. We could view our

data at each of these levels, and the next level up would simply be a summation of all the lower-level

data within that period. A calendar quarter sum would be the sum of all the values in the calendar

month level in that quarter, and the multidimensional implementation includes the metadata to

facilitate these kinds of calculations. This is one of the strengths of a multidimensional implementation.

Creating a Time dimension with the Time Dimension Wizard

Let's start creating our Time dimension by launching Design Center if it's not already running. In the Project

Explorer window, we're going to expand the Databases node under ACME_DW_PROJECT, and then our ACME

data warehouse node ACME_DWH. We will right-click on the Dimensions node, and select New | Using Time

Wizard... to launch the Time Dimension Wizard. The Time Dimension Wizard will walk us through a six-step

process to define the characteristics of our Time dimension.

TYBSC-IT (SEM 6) DATA WAREHOUSING

67

WE-IT TUTORILAS PHNO:8097071144/55

1. The first step of the wizard will ask us for a name for our Time dimension. We're going to call it

DATE_DIM. If we try to use just DATE, it will give us an error message because that is a reserved word in

the Oracle Database; so it won't let us use it.

2. The next step will ask us what type of storage to use for our new dimension, as shown here:

TYBSC-IT (SEM 6) DATA WAREHOUSING

68

WE-IT TUTORILAS PHNO:8097071144/55

Here we get to designate whether we want a relational physical implementation in the database or a

multidimensional implementation. This is what was referred to earlier as checking a box to switch

between the two. Simply select one or the other, and this is how our design will be implemented in the

database with no changes by us required at all. As we discussed in the last chapter, we're going to

implement our data warehouse using the pure relational option. So we're going to select ROLAP, as

shown in the image above.

3. Now this brings us to step 3, which asks us to specify the data generation information for our

dimension. The Time Dimension Wizard will be automatically creating a mapping for us to populate our

Time dimension and will use this information to load data into it. It asks us what year we want to start

with, and then how many total years to include starting with that year. The numbers entered here will

be determined by what range of dates we expect to load the data for, which will depend on how much

historical data we will have available to us. The other option available to us on the data generation step

is the type of Time dimension to create. It can be based on a calendar year or fiscal year. This provides

us with the flexibility to define our Time dimension based on what our company actually uses for its

financial year.

4. This step is where we choose the hierarchy and levels for our Time dimension. We have to select one

of the two hierarchies. We can use the Normal Hierarchy of day, month, quarter, and year; or we can

choose the Week Hierarchy, which consists of two levels only—the day and the calendar week. Notice

that if we choose the Week Hierarchy, we won't be able to view data by month, quarter, or year as

these levels are not available to us. This is seen in the following image:

TYBSC-IT (SEM 6) DATA WAREHOUSING

69

WE-IT TUTORILAS PHNO:8097071144/55

The levels are not available to us because a week does not roll up or aggregate to a month. Some

months have four weeks while some have five, and that's not even exact weeks. The only month that

has a month evenly divided by weeks is February, and that's only during non-leap years.

This points out an important aspect of aggregation when deciding what our levels should be. It's very important to keep

that idea of aggregation or summing in mind when choosing levels, or we will end up with data that doesn't make sense.

The Time Dimension Wizard will not allow us to choose levels that don't sum up correctly because it has predefined a list

of levels for us to choose from, with preset hierarchies.

We're going to select the normal hierarchy, and now we can choose which of the levels to include. It is

always a good idea to include the lowest level possible in our hierarchy to provide maximum flexibility in

aggregating data in this dimension. If we leave out day, then we will never be able to view our data by

day, but only by month at the lowest level.

5. Let's move on to step 5 where the wizard will provide us the details about what it is going to create.

An example is shown in the following image, which is what you should see if you've made all the same

selections as we've moved along.

TYBSC-IT (SEM 6) DATA WAREHOUSING

70

WE-IT TUTORILAS PHNO:8097071144/55

The sequence is an object that will be created to populate the ID values with unique numbers. It is

created automatically for us by the wizard. This ID value is used as what is called the Surrogate

Identifier for a level record. This value stands in (acts as a surrogate) for the actual unique identifier for

the record. The actual identifier is called a Business Identifier. It contains one or more attributes that

have been selected by us to uniquely represent a one-level record to differentiate it from another.

When we link a dimension to a cube, it will use that surrogate identifier as the key to link to, as this is

easier for the database to use than a potentially multi-attribute business identifier. However, we think in

terms of the business identifier. The Time dimension created by the wizard creates an attribute called

CODE, which it uses as the business identifier. It is a number that is used to represent the date for the

level record. We will shortly use the New Dimension Wizard to create our Product dimension, and there

we'll see how to specify a business identifier explicitly.

The DATE_DIM_MAP map entry that we can see in the previous image is a mapping for our DATE_DIM

dimension, which can be run to populate the dimension. It will be created automatically for us by the

wizard.

6. Continuing to the last step, it will display a progress bar as it performs each step and will display text

in the main window indicating the step being performed. When it completes, we click on the Next

button and it takes us to the final screen—the summary screen. This screen is a display of the objects it

created and is similar to the previous display in step 5 of 6 that shows the pre-create settings. At this

point, these objects have been created and we press the Finish button. Now we have a fully functional

Time dimension for our data warehouse.

We could use the Data Object Editor to create our Time dimension, but we would have to manually

specify each attribute, level, hierarchy, and sequence to use. Then we would have to create the mapping

to populate it. So we definitely saved quite a bit of time by using the wizard.

The Time Dimension Wizard does quite a bit for us. Not only does it create the Time dimension, but also

creates a couple of additional objects needed to support it.

TYBSC-IT (SEM 6) DATA WAREHOUSING

71

WE-IT TUTORILAS PHNO:8097071144/55

Besides the dimension that it created, we now have a mapping that appears under the Mappings node.

This is what we will deploy and run to actually build our Time dimension. We can also see that a

sequence was created under the Sequences node. This is the sequence the dimension will use for the ID

attribute that it created automatically as the surrogate identifier.

This completes our Time dimension, so let's look at the next dimension we're going to create. It is the

dimension to hold the product information.

The Product dimension
In the Product dimension, we will create the attributes that describe the products sold by ACME Toys

and Gizmos. The principles of the Time dimension apply to this dimension as well. The same four

characteristics need to be defined—Levels, Dimension Attributes, Level Attributes, and Hierarchies. The

only difference will be that they are product-oriented instead of time/date-oriented.

The first thing we should consider is how each toy or gizmo sold by ACME is represented. As with any

retail operation, a Stock Keeping Unit (SKU) is maintained that uniquely identifies each individual type

of item sold. This is an individual number assigned by the main office that uniquely identifies each type

of product sold by ACME, and there could be tens of thousands of different items. There could be more

than one product with the same name, but they won't have the same SKU. So the SKU, together with

the NAME, forms the business identifier we can use for the products. An SKU number all by itself is not

very helpful. Therefore, in our Product dimension, we will want to make available more descriptive

information about each product such as the description.

Every SKU can be grouped together by brand name—the toy manufacturer who makes the product—

and then by the category of product, such as game, doll, action figure, sporting goods, and so on. Each

category could be grouped by department in the store. Already, a list of attributes is starting to take

TYBSC-IT (SEM 6) DATA WAREHOUSING

72

WE-IT TUTORILAS PHNO:8097071144/55

shape and a product hierarchy is forming in our minds. For each of those levels in the hierarchy, that is

the department, category, and brand, we need to have a business identifier. For that the NAME will be

sufficient as there are no departments, categories, or brands that have the same name.

Product Attributes (attribute type)

 ID (Dimension/Level)

 SKU (Level)

 Name (Dimension/Level)

 Description (Dimension/Level)

 List Price (Level)

Product Levels
 Department located in

 Category of item

 Brand

 Item

Product Hierarchy (highest to lowest)
 Department

 Category

 Brand

 Item

Looking at the product attributes, we see that they have been listed above with the type and that ID,

Name, and Description are labeled as dimension attributes. This means they can appear on more than

one level. Each level has a name (Item, Brand, Category, and Department) that identifies the level, but

what about the names of the individual brands, or the different categories or departments? There has to

be a place to store those names and descriptions, and that is the purpose of these dimension attributes.

By labeling them as dimension attributes, they appear once for each level in the dimension. They are

used to store the individual names and descriptions of the brands, categories, and departments.

Creating the Product dimension with the New Dimension Wizard

OWB provides a wizard that we can use to create a dimension. It is similar to the Time Dimension

Wizard we used earlier, but is more generic for applying to other dimensions. As a result, there will be

more steps involved in the wizard just because it has to ask us more because it will not be able to make

as many assumptions as it did with the Time dimension. This wizard can be used with any dimension,

and therefore things such as attributes, levels, and hierarchies are going to need to be defined explicitly.

Right-click on the Dimensions node under our ACME_DWH Oracle module, which is under Databases in

the Design Center Project Explorer. Choose New and then Using Wizard... to launch the Create

TYBSC-IT (SEM 6) DATA WAREHOUSING

73

WE-IT TUTORILAS PHNO:8097071144/55

Dimension Wizard. The very first screen we'll see is the Welcome screen that will describe for us the

steps that we will be going through. We can see that it requires more steps than the Time Dimension

Wizard:

We will have to provide a name for our dimension, and tell it what type of storage to use—relational or

multidimensional—just as we did for the Time Dimension Wizard. It will then ask us to define our

dimension attributes. We didn't have to do that for the Time dimension.

That wizard had a preset number of attributes it defined for us automatically because it knew it was

creating a Time dimension. We then had to define the levels where we simply chose from a preset list of

levels for the Time dimension. Here we have to explicitly name the levels. This is where we'll have to pay

close attention to aggregations. We will then choose our level attributes from the dimension attributes.

Then we see in the previous figure that we will have to choose the slowly changing dimension type,

which is how we want to handle changes to values in our dimension attributes over time.

We'll then get a last chance to review the settings, and then it will create the dimension for us showing

us the progress, which is similar to the last two steps of the Time Dimension Wizard.

1. After reviewing the steps, the wizard will go to the next screen where we enter a name for the

dimension that we will call Product.

2. We'll then proceed to step 2, which is where we will select the ROLAP option for relational, as we

did for the Time dimension.

TYBSC-IT (SEM 6) DATA WAREHOUSING

74

WE-IT TUTORILAS PHNO:8097071144/55

3. Proceeding to step 3, we will be able to list the attributes that we want contained in our Product

dimension. We see that the wizard was nice enough to create three attributes for us already—an ID, a

NAME, and a DESCRIPTION as shown here:

Notice that the wizard has already labeled the ID as the Surrogate Identifier and the Name as the Business

Identifier, and selected data types for those attributes for us.

We'll make the following changes:

o Enter SKU in the name column on line 4 and leave the data type as
VARCHAR2, but change the length to 50. Scroll the window to the right if
any columns are not visible that need to be changed. We can also expand the
dialog box to show additional columns.

o Enter LIST_PRICE in the name column on line 5, leave the data type as
NUMBER, and leave the precision and scale as eight and two as it suggested.

o Make SKU a Business Identifier field in addition to Name. (Click on the
drop-down box in the identifier column for SKU, and select Business.)

o Change the length of the NAME column from 25 to 50.
o Change the length of the DESCRIPTION column from 40 to 200.

Suppose we make a mistake and enter a value and then decide not to keep it. Then we can delete the

row by right-clicking on the row number to the left of the row, and then selecting Delete from the pop-

up menu.

If we were to scroll that window all the way to the right, or expand it completely, we'd see even more

columns such as the Seconds Precision and Descriptor column. If we press the Help button, it will

explain what each column is. Briefly, the Seconds Precision is applicable to only TIMESTAMP data types,

TYBSC-IT (SEM 6) DATA WAREHOUSING

75

WE-IT TUTORILAS PHNO:8097071144/55

and expresses the precision of the seconds' portion of the value. The Descriptor is applicable to MOLAP

(multidimensional) implementations and provides six standard descriptions that can be assigned to

columns. It presets two columns, the Long description and the Short description. We can safely

ignore them for our application.

4. The next step is where we can specify the levels in our dimension. There must be at least
one level identified, but we are going to have four in our Product dimension. They are to be
entered on this screen in order from top to bottom with the highest level listed first, then
down to the lowest level. For our dimension, we'll enter DEPARTMENT, CATEGORY, BRAND,
and ITEM in that order from top to bottom.

5. Moving on to the next screen, we get to specify the level attributes. At the top are the levels, and at

the bottom is the list of attributes with checkboxes beside each. If we click on each level in the top

portion of the dialog box, we can see in the bottom portion that the wizard has preselected

attributes for us. It chooses the three default attributes it created for us to be level attributes for

each level, and the other two attributes—the SKU and LIST_PRICE—that we entered as level

attributes for the bottom-most level—the ITEM level. We are not going to make any changes on

this screen.

6. This brings us to step 6 where we get to choose the Slowly Changing Dimension (SCD) type. This

refers to the fact that dimension values will change over time. Although this doesn't happen often,

they will change and hence the "slowly" designation.

We will have the following three choices, which are related to the issue of whether or how we want
to maintain a history of that change in the dimension:

Type 1: Do not keep a history. This means we basically do not care what the old value was
and just change it.

Type 2: Store the complete change history. This means we definitely care about keeping that
change along with any change that has ever taken place in the dimension.

Type 3: Store only the previous value. This means we only care about seeing what the
previous value might have been, but don't care what it was before that.

TYBSC-IT (SEM 6) DATA WAREHOUSING

76

WE-IT TUTORILAS PHNO:8097071144/55

The Type 2 and Type 3 options require additional licensing for our database if we want OWB to handle

them automatically. We will need a license for the Warehouse Builder Enterprise ETL Option for that.

The Type 2 option to maintain a complete history would result in needing additional attributes where

we want to maintain historical information. We need attributes designated as Triggering attributes. If

changed, these attributes will generate a historical record. We also need an Effective Date attribute and

an Expiration Date attribute. The Effective Date is when the record is entered. If a triggering attribute

changes, the Expiration Date is set and a new record created with the updated information.

For the slowly changing Type 3 option, a new attribute in the dimension will be required to store only

the most recent value.

7. Moving on, we get our summary screen of the actions we performed. Here we can review our

actions, and go back and make any changes if needed. It will look like the following, based on the

selections we've made:

8. Everything looks fine, so we move on to step 8. This step creates the dimension, showing us a

progress bar as it does its work. It will report a successful completion when it's done, and clicking on

the Next button at this point will bring us to the summary screen where we see the above

information followed by additional information that the wizard has created for us based on our

responses.

TYBSC-IT (SEM 6) DATA WAREHOUSING

77

WE-IT TUTORILAS PHNO:8097071144/55

To reiterate, nothing has been physically created for us in the database yet. What the wizard has created

for us are the definitions of our dimension, and the underlying table and other objects in OWB. The

previous screen shows a Sequence, Table Name, and Unique Key that all correspond to objects that the

wizard is creating for us in OWB.

Our Product dimension is now created and we can see it in the Project Explorer window under the

Dimensions node under our ACME_DWH Oracle module.

The Store dimension
We can create our Store dimension in a similar manner using the wizard. We will not go through it in

much detail as it is very similar to how we created the Product dimension. The only difference is the

type of information we're going to have in our Store dimension. This dimension provides the location

information for our data warehouse, and so it will contain address information.

The creation of this dimension will be left as an exercise for the reader using the following details about

the dimension.

Store Attributes (attribute type), data type and size, and
(Identifier)

o ID (Dimension/Level): Leave default for type and size (Surrogate ID)
o Store_Number (Level, STORE only): VARCHAR2 length 10 (Business ID)
o Name (Dimension/Level): VARCHAR2 length 50 (Business ID)
o Description (Level, COUNTRY and REGION only): VARCHAR2 length 200
o Address1 (Level, STORE only): VARCHAR2 length 60

TYBSC-IT (SEM 6) DATA WAREHOUSING

78

WE-IT TUTORILAS PHNO:8097071144/55

o Address2 (Level, STORE only): VARCHAR2 length 60
o City (Level, STORE only): VARCHAR2 length 50
o State (Level, STORE only): VARCHAR2 length 50
o ZipPostalCode (Level, STORE only): VARCHAR2 length 50
o County (Level, STORE only): VARCHAR2 length 255

Store Levels
 Country

 Region

 Store

Store Hierarchy (highest to lowest)
 Country

 Region

 Store

Creating the Store dimension with the New Dimension Wizard
In step 3, where we put in the attributes listed previously, we need to make sure not to forget to specify

the surrogate and business identifiers. The surrogate identifier can stay as the default on the ID, but we

will have to change the business identifier to be the STORE_NUMBER, which is a unique number that

ACME Toys and Gizmos Company assigns to each of its stores.

In step 5 where we specify the level attributes, (the above-listed attributes that are applicable to each

level) we need to specify all the attributes except DESCRIPTION for the Store level, and then just ID,

NAME, and DESCRIPTION for the Region and Country levels. This is how we will include the region

and country information.

It may seem a bit redundant to include a description as well as a name for the Country and Region levels as our

source data at the moment only includes one field to identify the country and region.

The New Dimension Wizard actually helps us to avoid this error by automatically including three attributes: an ID as the

surrogate identifier, a NAME as the business identifier, and a DESCRIPTION as the updatable field.

In step 7, the Pre Create settings page, as shown next, we can see what we should have specified for the

Store dimension. We can click on the Back button to go back to make any changes.

TYBSC-IT (SEM 6) DATA WAREHOUSING

79

WE-IT TUTORILAS PHNO:8097071144/55

Creating a cube in OWB
We need to define our cube, which is where our measures will be stored—the facts that users will want

to query. We discussed the design of our cube and agreed that we would store two measures, namely

TYBSC-IT (SEM 6) DATA WAREHOUSING

80

WE-IT TUTORILAS PHNO:8097071144/55

the sales amount and the number of items sold. We have already designed our three dimensions, and

their links and measures will go together to make up the information stored in our cube.

There is a wizard available to us for creating a cube that we will make use of to ease our task. So let's

start designing the cube with the wizard.

Creating a cube with the wizard
We will start the wizard in a similar manner to how we started up the Dimension wizard. Right-click on

the Cubes node under the ACME_DWH module in Project Explorer, select New, and then Using

Wizard... to launch the cube-creation wizard.

The following are the steps in the creation process:

1. We proceed right to the first step where we give our cube a name. As we will be primarily

storing sales data, let's call our cube SALES and proceed to the next step.

2. In this step, we will select the storage type just as we did for the dimensions. We will select ROLAP

for relational storage to match our dimension storage option, and then move to the next step.

3. In this step, we will choose the dimensions to include with our cube. We have defined three, and

want all them all included. So, we can click on the double arrow in the center to move all the

dimensions and select them. If we had more dimensions defined than we were going to include with

this cube, we would click on each, and click on the single right arrow (to move each of them over);

or we could select multiple dimensions at one time by holding down the Ctrl key as we clicked on

each dimension. Then click the single right arrow to move those selected dimensions. This step looks

like the following after we've made our selections:

TYBSC-IT (SEM 6) DATA WAREHOUSING

81

WE-IT TUTORILAS PHNO:8097071144/55

4. Moving on to the last step, we will enter the measures we would like the cube to contain. When we
enter QUANTITY for the first measure and SALES_AMOUNT for the second one, we end up with a
screen that should look similar to this with the dialog box expanded to show all the columns:

Clicking on Next in step 4 will bring us to the final screen where a summary of the actions it will take are

listed. Selecting Finish on this screen will close the dialog box and place the cube in the Project Explorer.

The final screen looks like the following:

TYBSC-IT (SEM 6) DATA WAREHOUSING

82

WE-IT TUTORILAS PHNO:8097071144/55

This dialog box works in a slightly different way than the dimension wizard. This final screen is the

second-to-last screen when creating a dimension. The dimension wizard will present us with the

progress screen as the final step

Just as with the dimension wizard earlier, we get to see what the cube wizard is going to create for us in the

Warehouse Builder.

The wizard shows us that it will be creating a table named SALES for us that will contain the referenced

columns, which it figured out from the dimension and measures information we provided. At this point,

nothing has actually been created in the database apart from the definitions of the objects in the Warehouse

Builder workspace. We can verify that if we look under the Tables entry under our ACME_DWH database

node. We'll see a table named SALES along with tables named PRODUCT, STORE, and DATE_DIM. These are

the tables corresponding to our three dimensions and the cube.

The foreign keys we can see in the previous image are the pointers to the dimension tables. They will make

the connection between our cube and our dimensions when they are deployed to the database.

The aggregation the cube will perform for us when we view different levels is one of those behind-the-scenes

capabilities we would get with the OLAP feature. When we view the region amounts, they will automatically

be summed up from the amounts of the various stores in the region without us having to do anything extra.

This is a nice feature the multidimensional implementation gives us, but aggregations are not created for the

pure relational storage option. As we can generate either a relational or a multidimensional implementation,

this had to be specified anyway and so it defaulted to sum. It is possible to use aggregations with a pure

relational implementation by creating separate summing tables, and there are OLAP data mining applications

that can make use of them for more advanced implementations.

TYBSC-IT (SEM 6) DATA WAREHOUSING

83

WE-IT TUTORILAS PHNO:8097071144/55

We click on the Finish button on this final screen and our sales cube is created. We'll save our work with the

Ctrl+S key combination or from the design main menu. Our cube and dimensions are now complete. Let's

take a look next at the Data Object Editor where we can view and edit our objects.

Using the Data Object Editor
The Data Object Editor is the manual editor interface that the Warehouse Builder provides for us to

create and edit objects. We did not have to use it to create a dimension, but more advanced

implementations would definitely need to make use of it; for instance, to edit the cube to change the

aggregation method that we just discussed.

We can get to the Data Object Editor from the Project Explorer by double-clicking on an object, or by

highlighting an object (by selecting it with a single click), and then selecting Edit | Open Editor from the

menu. Let's open the DATE_DIM dimension in the Data Object Editor and examine it as shown here:

 Canvas: Every editor has an area in which the contents are displayed graphically. This is called

the Canvas. As we're in the Data Object Editor, the objects in the Canvas will be the objects that

we created to hold data, which in this case are our cube and dimensions. Each object is

displayed in a box with the name of the object as the title of the box and attributes of the object

TYBSC-IT (SEM 6) DATA WAREHOUSING

84

WE-IT TUTORILAS PHNO:8097071144/55

listed inside the box. These boxes can be moved around and resized manually to suit our tastes.

There are three tabs available in the Data Object Editor Canvas: one for Relational, one for

Dimensional, and one for Business Definition.

 They are for displaying objects of the corresponding type. As we're working with cubes and

dimensions, these will be displayed on the Dimensional tab. If we were working with the

underlying tables, they would have appeared on the Relational tab. The Business Definitions are

for interfacing with the Oracle Discoverer Business Intelligence tool to analyze data.

 Explorer: This is roughly analogous to the Project Explorer in the main Design Center interface,

but it displays a subset of the objects that is applicable to the type of editor we have open. As

this is the Data Object Editor, we can see other data objects in the Explorer. The Available

Objects tab shows us objects that are available to include on our Canvas, the Selected Objects

tab shows the objects that are actually currently on the Canvas, and will highlight the object

currently selected.

 Configuration: The configuration window displays configuration information (properties) about

items on our Canvas. If nothing shows in this window, just select an object in the Canvas by

clicking on it and the configuration will appear. It is here that we can change the deployment

option for the object to deploy OLAP metadata if we want a relational implementation to store

the OLAP metadata. With the DATE_DIM dimension selected, scroll the Configuration window

down to the Identification section, which contains a setting for the deployment option and we

can see that it is set to deploy data objects only.

 Palette: The Palette contains each of the objects that can be used in the Data Object Editor. In

this case, they are all data objects. The list of objects available will change as the tab is changed

in the Canvas to view different types of object. We can use this to create objects on our Canvas

by clicking and dragging to the Canvas. This will create a new object where clicking and dragging

from the Explorer will place an already created object on the canvas.

 Bird's Eye View: This window displays a miniature version of the entire Canvas and allows us to

scroll around the Canvas without using the scroll bars. We can click and drag the blue-colored

box around this window to view various portions of the main canvas, which will scroll as we

move the blue box. We will find that in most editors, we will quickly outgrow the available space

to display everything at once and will have to scroll around to see everything. This can come in

very handy for rapidly scrolling the window.

 Dimension Details: This is the window on the lower right and it contains details about the

dimension we are currently editing. If nothing is displayed in the window, just click on the

DATE_DIM dimension and its details will appear. Six tabs will appear, which display information

for us. The names on those six tabs will change depending on the type of object we have

selected.

TYBSC-IT (SEM 6) DATA WAREHOUSING

85

WE-IT TUTORILAS PHNO:8097071144/55

1. Name: This tab displays the name of the dimension along with some other information

specific to the dimension type we are looking at. In this case, it's a Time dimension created

by the Time Dimension Wizard and so it displays the range of data in our Time dimension.

2. Storage: Here we can see what storage option is set for our dimension object in the

database, whether Relational or Multidimensional. If we wanted to switch between the two,

this is where we could do it. For a relational implementation, we're able to specify a star or

snowflake schema and whether we want to create composite unique keys. A composite key

is one made up of more than one column to define uniqueness for a record.

3. Attributes: The attributes tab is where we can see the attributes that are designed for our

dimension. It displays the attributes in a tabular form allowing us to view and/or edit them,

including adding new attributes or deleting the existing ones. It is here that we can also

change the description of our attributes if we wanted, or add descriptions the wizard did not

add.

4. Levels: This is where we view and/or edit the levels for our dimension. We are able to edit

some of the information on this tab for the Time dimension created by the wizard, but not

all. We can check and uncheck boxes to indicate which of the various level types we want to

use and which attributes are applicable to which level, but that is it. We are not able to add

or remove any levels or attributes. If we were to view one of the other dimensions we

created, it would be fully editable. For those other dimensions we could also assign different

names and descriptions to the attributes for each level.

5. Hierarchies: This tab will let us specify hierarchy information for our dimension and will

even let us create a new hierarchy. It's possible that we may have selected more levels on

the previous page and now need to assign them to a hierarchy. There is also a Create Map

button here that will automatically generate the mapping for us if we modify the

hierarchies. This is one of the benefits of the Time dimension created by the wizard.

Ordinary dimensions such as our Store and Product dimension will not have this Create Map

button displayed on their Hierarchies tab.

6. Data Viewer: The Data Viewer is a more advanced feature that allows us to actually view

the data in an object we are editing. This is only available for an object if it has been

deployed to the database and has data loaded into it. It has a query capability to retrieve

data and can specify a WHERE clause to get just the data we might need to see. For

relational implementations, it will not display the data for a dimension or cube; but we can

use it to view the data in the underlying table

TYBSC-IT (SEM 6) DATA WAREHOUSING

86

WE-IT TUTORILAS PHNO:8097071144/55

Cube Details: If we click on the Sales Cube, the details window changes to display the details of our cube

and the title changes to Cube Details. The tabs also change slightly:

Name: It has a name tab like the dimensions to display its name.

Storage: It has a storage tab as per dimensions. However, we see a different option here under the

Relational (ROLAP) option where we can create bitmap indexes. An index is a database feature that

allows faster access to data. It is somewhat analogous to the index of a book that allows us to get to a

page in the book with the information we want much faster. A bitmap-type index refers to how it is

stored in the database and is generally a better option to use for data warehouse implementations (so it

is checked by default). There is also a composite unique key checkbox for cubes as there was for

dimensions.

Dimensions: Instead of attributes, the cube has a tab for dimensions. The dimensions referenced by a

cube are basically its attributes.

Measures: The next tab is for the measures of the cube. It is for those values that we are storing in our

cube as the facts that we wish to track.

Aggregations: Instead of hierarchies, a cube has aggregations. There are various methods of aggregation

that we can select, as seen in the drop-down box, the most common of which is sum, which is the

default. This is where the default aggregation method referred to earlier can be changed. There will be

no aggregations in a pure relational implementation, so we will leave this tab set to the defaults and not

bother changing it.

Data Viewer: There is a tab for the data viewer to view cube data just as there is for a dimension. For

pure relational implementations, it views the underlying table data.

These are the main features of the Data Object Editor. We can use it to view the objects the wizards

have created for us, edit them, or create brand new objects from scratch. We can start with an empty

canvas and drag new objects from the palette, or existing objects from the explorer, and then connect

them. We will see other editors very similar to this from the next chapter when we start to look at ETL

and mappings.

TYBSC-IT (SEM 6) DATA WAREHOUSING

87

WE-IT TUTORILAS PHNO:8097071144/55

Unit 4

4.1 Extract, Transform, and Load

Basics
ETL (Extract, Transform, and Load) for the first time in this book. ETL is the first step in building the

mappings from source to target. We have sources and targets defined and now we need to:

1. Work on extracting the data from our sources.

2. Perform any transformations on that data (to clean it up or modify it).

3. Load it into our target data warehouse structure.

We will accomplish this by designing mappings in OWB. Mappings are visual representations of the flow

of data from source to target and the operations that need to be performed on the data.

ETL

The process of extracting, transforming, and loading data can appear rather complicated. We do have a

special term to describe it, ETL, which contains the three steps mentioned. We're dealing with source

data on different database systems from our target and a database from a vendor other than Oracle.

Let's look from a high level at what is involved in getting that data from a source system to our target,

and then take a look at whether to stage the data or not. We will then see how to automate that

process in Warehouse Builder, which will relieve us of much of the work.

Manual ETL processes

First of all, we need to be able to get data out of that source system and move it over to the target

system. We can't begin to do anything until that is accomplished, but what means can we use to do so?

We know that the Oracle Database provides various methods to load data into it. There is an application

that Oracle provides called SQL*Loader, which is a utility to load data from flat files. This could be one

way to get data from our source system. Every database vendor provides some means of extracting data

from their tables and saving it to flat files. We could copy the file over and then use the SQL*Loader

utility to load the file. Reading the documentation that describes how to use that utility, we see that we

have to define a control file to describe the loading process and definitions of the fields to be loaded.

In a nutshell, this is the process of extract, transform, and load. We have to:

TYBSC-IT (SEM 6) DATA WAREHOUSING

88

WE-IT TUTORILAS PHNO:8097071144/55

1. Extract the data from the source system by some method.

2. Load flat files using SQL*Loader or via a direct database link. Then we have to transform that data

with SQL or PL/SQL code in the database to match and fit it into the target structure.

3. Finally, we have to load it into the target structure.

The good news here is that the Warehouse Builder provides us the means to design this process

graphically, and then generate all the code we need automatically so that we don't have to build all that

code manually.

Staging

Staging is the process of copying the source data temporarily into a table(s) in our target database. Here

we can perform any transformations that are required before loading the source data into the final

target tables. The source data could actually be copied to a table in another database that we create just

for this purpose, but it doesn't have to be. This process involves saving data to storage at any step along

the way to the final target structure, and it can incorporate a number of intermediate staging steps. The

source and target designations will be affected during the intermediate steps of staging. So we'll need to

decide on a staging strategy, if any, before designing the ETL in OWB. Now, we'll look at the staging

process before we actually design any ETL logic.

To stage or not to stage

There are a number of considerations we can take into account when deciding whether to use a staging

area or not for our source data:

The points to consider to keep the process flowing as fast as possible are:

The amount of source data we will be dealing with

The amount of manipulations of the source data that will be required

If the source data is in another database other than an Oracle Database, the reliability of the connection

to the database and the performance of the link while pulling data across

If a failure occurs during an intermediate step of the ETL process, we will have to restart the process. If

such a failure occurs, we will have to consider the severity of the impact, as in the following cases:

Going back again to the source system to pull data if the first attempt failed.

The source data is changing while we are trying to load it into the warehouse, meaning that whatever

data we pull the second time might be different from what we started with (and which caused the

failure). This condition will make it difficult to debug the error that caused this failure.

TYBSC-IT (SEM 6) DATA WAREHOUSING

89

WE-IT TUTORILAS PHNO:8097071144/55

These points will determine whether it makes sense to create a staging area.

 Configuration of a staging area

A staging area is clearly an advantage when designing our ETL. So we'll want to create one, but we will

need to decide where we want to create it—in the database or outside the database.

Our staging area in this case would be a folder on the file system and the data would be stored in a flat

file.

The external tables in the Oracle Database now render some of the reasons for keeping source staging

data in tables in the database moot. We can treat a flat file as essentially another table in the database.

This option is available to us in the Warehouse Builder for defining a flat file as a source, but not a

target. So we must keep this in mind if we want to stage data at some other point during the process

after the initial load of data. Earlier, we needed to have all our data in database tables if we were relying

solely on SQL in the database. External tables allow us to access flat files using all the benefits of SQL for

querying the data, so now that reason is not as big a factor as it once was.

Mappings and operators in OWB

The Warehouse Builder and its features for designing and building our ETL process. OWB handles this

with what are called mappings. A mapping is composed of a series of operators that describe the

sources, targets, and a series of operations that flow from source to target to load the data. It is all

designed in a graphical manner using the Mapping Editor, which is available from the Design Center.

In the Design Center | Project Explorer window, expand the ACME_DW_PROJECT project (if it is not

already expanded) by clicking on the plus sign beside it. To access the Mapping Editor, we need a

mapping to work on. So to begin with, we can create an empty mapping at this point.

Mappings are created in the Mappings node. We can find it under the module we created to hold our

data warehouse design under the Databases | Oracle node in our project. Expand that module, which

we called ACME_DWH, and then expand the Mappings node underneath it.

The DATE_DIM_MAP we see under Mappings is the mapping that was created for us automatically by

the Time Dimension wizard. Instead of creating a new mapping, which will have nothing in it yet, let's

open this mapping and take a look at it for our initial exploration of the features in OWB for designing

mappings. Let's double-click on the DATE_DIM_MAP mapping. It will launch the Mapping Editor and

load the DATE_DIM_MAP into it. We are not going to modify it, but we will use the displayed Mapping

Editor to familiarize ourselves with its features.

TYBSC-IT (SEM 6) DATA WAREHOUSING

90

WE-IT TUTORILAS PHNO:8097071144/55

View on the righthand side of the Mapping Editor might look like one single object instead of multiple

objects with the connector lines drawn between them. Mappings created automatically like this one do

not bother with any layout details, and just place all the objects in the same spot on the canvas (that big

window on the right). We can go on clicking on the object and dragging it into a new location, thus

revealing the one beneath it; but that's too much work. The Mapping Editor, as with all the editors,

provides a convenient Auto Layout option that will do all that for us. Click on the Auto Layout button in

the toolbar to spread everything out.

The windows of the Mapping Editor are:

Mapping

The Mapping window is the main working area on the right where we will design the mapping. This

window is also referred to as the canvas. The Data Object Editor used the canvas to lay out the data

objects and connect them, whereas this editor lays out the mapping objects and connects them. This is

the graphical display that will show the operators being used and the connections between the

operators that indicate the data flow from source to target.

Explorer

This window is similar to the Project Explorer window from the Design Center, and is the same as the

window in the Data Object Editor. It has the same two tabs—the Available Objects tab and the

Selected Objects tab. It displays the same information that appears in the Project Explorer, and allows

us to drag and drop objects directly into our mapping. The tabs in this window are:

Available Objects: This tab is almost like the Project Explorer. It displays objects defined in our project

elsewhere, and they can be dragged and dropped into this mapping.

Selected Objects: This tab displays all the objects currently defined in our mapping. When an object is

selected in the canvas, the Selected Objects window will scroll to that object and highlight it. Likewise, if

we select an object in the Selected Objects tab, the main canvas will scroll so that the object is visible

and we will select it in the canvas. Go ahead and click on a few objects to see what the tab does.

Mapping properties

The mapping properties window displays the various properties that can be set for objects in our

mapping. It was called the Configuration window in Data Object Editor. When an object is selected in

the canvas to the right, its properties will display in this window.

Select the DATE_INPUTS operator. We can scroll the Explorer window until we see the operator and

then click on it, or we can scroll the main canvas until we see it and then click on the top portion of the

frame to select it. It is the first object on the left and defines inputs into DATE_DIM_MAP.

TYBSC-IT (SEM 6) DATA WAREHOUSING

91

WE-IT TUTORILAS PHNO:8097071144/55

Palette

The Palette contains each of the objects that can be used in our mapping. We can click on the

object we want to place in the mapping and drag it onto the canvas. This list will be customized based

on the type of editor we're using. The Mapping Editor will display mapping objects. The Data Object

Editor will display data objects.

Bird's Eye View

This window displays a miniature version of the entire canvas and allows us to scroll around the canvas

without using the scroll bars. We can click and drag the blue-colored box around this window to view

various portions of the main canvas. The main canvas will scroll as we move the blue box. Go ahead and

give that a try. We will find that in most mappings, we'll quickly outgrow the available space to display

everything at once and will have to scroll around to see everything. This can come in very handy for

rapidly scrolling the window.

The canvas layout

In the canvas, we'll take a look at the operator that is on the far left of the canvas called DATE_INPUTS.

This operator happens to be a Mapping Input Parameter operator.

There are two major types of attributes—an input group and an output group. In this case, we can see

one group named OUTGRP1 which tells us this operator has only an output group.

The operator on the right of the DATE_INPUTS operator called DAY_TABLE_FUNCTION.

An attribute group name is edited in the Details window for the group name. This window is accessible

by right-clicking on the group name in the canvas and selecting Open Details... from the pop-up menu.

OWB operators

The types of operators—Source and Target Operators, Data Flow Operators, and Pre/Post Processing

Operators. All of the operators are available to us from the Palette window in the Mapping Editor.

Source and target operators

The Warehouse Builder provides operators that we will use to represent the sources of our data and the

targets into which we will load data.

Cube Operator—an operator that represents a cube. This operator will be used to represent that cube

in our mapping.

Dimension Operator—an operator that represents previously defined dimensions. This mapping is

designed to load our DATE_DIM dimension, and so an operator of the same name was created in it at

TYBSC-IT (SEM 6) DATA WAREHOUSING

92

WE-IT TUTORILAS PHNO:8097071144/55

the end on the far right of the canvas.

External Table Operator—this operator represents external tables, which we have seen in Chapter 2.

They can be used to access data stored in flat files as if they were tables. We will look at using an

external table to access the flat file that we imported.

Table Operator—this operator represents a table in the database. We will need to store data in tables in

our Oracle Database at some point in the loading of data.

Constant—represents a constant value that is needed. It can be used to load a default value for a field

that doesn't have any input from another source, for instance. The DATE_DIM_MAP mapping contains a

couple of constant values to represent hardcoded numbers. One is named ONE for the number 1, and

one is named ZERO for a 0.

View Operator—represents a database view. Source data is frequently retrieved via a view in the source

database that can pull data from multiple sources into a single, easily accessible view.

 Sequence Operator—can be used to represent a database sequence, which is an automatic generator

of sequential unique numbers and is most often used for populating a primary key field.

Construct Object—this operator can be used to actually construct an object in our mapping.

We can see three Construct Object operators in DATE_DIM_MAP—for a calendar month

(CONSTRUCT_OBJECT_CAL_MONTH), a calendar quarter (CONSTRUCT_OBJECT_CAL_QUARTER), and a

calendar year object (CONSTRUCT_OBJECT_CAL_YEAR). If we click on the attribute in the OUTGRP1 of

one of those construct operators, we can see in the Attribute Properties window on the left that it is of

type SYS_REFCURSOR.

 Data flow operators

The true power of a data warehouse lies in the restructuring of the source data into a format that

greatly facilitates the querying of large amounts of data over different time periods. For this, we need to

transform the source data into a new structure. That is the purpose of the data flow operators. They

are dragged and dropped into our mapping between our sources and targets. Then they are connected

to those sources and targets to indicate the flow of data and the transformations that will occur on that

data as it is being pulled from the source and loaded into the target structure. Some of the common

data flow operators we'll see are as follows:

Aggregator—there are times when source data is at a finer level of detail than we need. So we need to

sum the data up to a higher level, or apply some other aggregation type function such as an average

TYBSC-IT (SEM 6) DATA WAREHOUSING

93

WE-IT TUTORILAS PHNO:8097071144/55

function. This is the purpose of the Aggregator operator. This is implemented behind the scenes using

an SQL group by clause with an aggregation SQL function applied to the amount(s) we want to

aggregate.

Deduplicator—sometimes our data records will contain duplicate combinations that we want to weed

out so we're loading only unique combinations of data. The Deduplicator operator will do this for us. It's

implemented behind the scenes with the distinct SQL function, which returns combinations of data

elements that are unique.

Expression—this represents an SQL expression that can be applied to the output to produce the desired

result. Any valid SQL code for an expression can be used, and we can reference input attributes to

include them as well as functions.

Filter—this will limit the rows from an output set to criteria that we specify. It is generally implemented

in a where clause in SQL to restrict the rows that are returned. We can connect a filter to a source

object, specify the filter criteria, and get only those records that we want in the output.

Joiner—this operator will implement an SQL join on two or more input sets of data. A join takes

records from one source and combines them with the records from another source using some

combination of values that are common between the two. We will specify these common records as an

attribute of the join. This is a convenient way to combine data from multiple input sources into one.

Key Lookup—a Key Lookup operator looks up data in a table based on some input criteria (the key) to

return some information required by our mapping. It is similar to a Table Operator that was discussed

previously for sources and targets. However, a Key Lookup operator is geared toward returning a subset

of rows from a table based on the key criteria we specify, rather than representing all the rows of a

table, which the Table Operator does. It can look up data from a table, view, cube, or dimension.

Pivot—this operator can be useful if we have source records that contain multiple columns of data that

is spread across columns instead of rows. For instance, we might have source records of sales data for

the year that contain a column for each month of the year. But we need to save that information by

month, and not by year. The Pivot operator will create separate rows of output for each of those

columns of input.

Set Operation—this operator will allow us to perform an SQL set operation on our data such as a union

(returning all rows from each of two sources, either ignoring the duplicates or including the duplicates)

or intersect (which will return common rows from two sources).

Splitter—this operator is the opposite of the Joiner operator. It will allow us to split an input stream of

data rows into two separate targets based on the criteria we specify. It can be useful for shunting rows

of data off to a side error table to flag them while copying the good rows into the main target.

Transformation Operator—this operator can be used to invoke a PL/SQL function or procedure with

some of our source data as input to provide a transformation of data. For instance, the SQL trim()

TYBSC-IT (SEM 6) DATA WAREHOUSING

94

WE-IT TUTORILAS PHNO:8097071144/55

function can be represented by Transformation Operator to take a column value as input, and provide

the value as output after having any whitespace trimmed from the value. This is just one example of a

function that can be implemented with the Transformation Operator.

Table Function Operator—a Table Function Operator can be seen in the DATE_DIM_MAP map. There

are three Table Function operators defined:CAL_MONTH_TABLE_FUNCTION,

CAL_QUARTER_TABLE_FUNCTION, and CAL_YEAR_TABLE_FUNCTION. This kind of operator represents a

Table Function, which is defined in PL/SQL and is a function that can be queried like a table to return

rows of information. The Table Function Operators are more advanced than we will be covering in this

book, but are mentioned here as DATE_DIM_MAP includes them.

Pre/post-processing operators

There is a small group of operators that allow us to perform operations before the mapping

process begins, or after the mapping process ends. These are the pre- and post-processing

operators. We can perform functions or procedures before or after a mapping runs, and can

also accept input or provide output from a mapping process.

Mapping Input Parameter—this operator allows us to pass a parameter(s) into a mapping

process. It is very useful to make a mapping more generic by accepting a constant value as

input that might change, rather than hardcoding it into the mapping. DATE_DIM_MAP uses a

Mapping Input Parameter operator as its very first operator on the left, which we discussed

earlier when talking about Mapping Properties.

Mapping Output Parameter—as the name suggests, this is similar to the Mapping Input

Parameter operator; but provides a value as output from our mapping.

Post-Mapping Process—allows us to invoke a function or procedure after the mapping

completes its processing. There may be some cleanup we want to do automatically such as

deleting all the records from a table we're done with—perhaps a staging table that was used

during the mapping process.

Pre-Mapping Process—it's not too hard to figure out what this operator does. It allows us to

invoke a function or procedure before the mapping process begins. Maybe our mapping needs

to do a key lookup of a data value that is going to be stored in every row of output. But we

don't want to invoke a Key Lookup operator for every record of input. So we could use a Pre-

Mapping Process operator instead to invoke the function once at the beginning, which will

make the returned value available for every row that is processed without having to re-invoke

the procedure.

TYBSC-IT (SEM 6) DATA WAREHOUSING

95

WE-IT TUTORILAS PHNO:8097071144/55

Unit 4

4.2 Designing and building an ETL mapping

Instead of doing it all at once, we're going to bite off manageable chunks to work on a bit at a time. We

will start with the initial extraction of data from the source database into our target database without

having to worry about transforming it. Let's just get the complete set of data over to our target

database, and then work on populating it into the final structure. This is the role a staging area plays in

the process, and this is what we're going to focus on in this chapter to get our feet wet with designing

ETL in OWB. We're going to stage the data initially on the target database server in one location, where

it will be available for loading.

Designing our staging area
The first step is to design what our staging area is going to look like. The staging area is the interim

location for the data between the source system and the target database structure. The staging area will

hold the data extracted directly from the ACME_POS source database, which will determine how we

structure our staging table. So let's begin designing it.

Designing the staging area contents

Sales: The data elements in the Sales dimensional object are:

 Quantity

 Sales amount

Data:The data element in the Date dimensional object is:

 Date of sale.

 Product.:The data elements in the Product dimensional object are:

SKU, Name, List price, Department, Category, and Brand

Store: The data elements in the Store dimensional object are:

 Name

 Number

 Address1

 Address2

TYBSC-IT (SEM 6) DATA WAREHOUSING

96

WE-IT TUTORILAS PHNO:8097071144/55

 City

 State

 Zip postal code

 Country

 Region

Building the staging area table with the Data Object Editor
To get started with building our staging area table, let's launch the OWB Design Center if it's not already

running. Expand the ACME_DW_PROJECT node and let's take a look at where we're going to create this

new table.

The steps to create the staging area table in our target database are:

1. Navigate to the Databases | Oracle | ACME_DWH module. We will create our staging table

under the Tables node, so let's right-click on that node and select New... from the pop-up

menu. Notice that there is no wizard available here for creating a table and so we are using the

Data Object Editor to do it.

2. Upon selecting New.

3. The first tab is the Name tab where we'll give our new table a name. Let's call it

POS_TRANS_STAGE for Point-of-Sale transaction staging table. We'll just enter the name into

the Name field, replacing the default TABLE_1 that it suggested for us.

4. Let's click on the Columns tab next and enter the information that describes the columns of our

new table. Earlier in this chapter, we listed the key data elements that we will need for creating

the columns.

We'll save our work using the Ctrl+S keys, or from the Diagram | Save All main menu entry in the Data

Object Editor before continuing through the rest of the tabs. We didn't get to do this back in Chapter 2

when we first used the Data Object Editor.

The other tabs in Data Object Editor for a table are:

 Constraints

The next tab after Columns is Constraints where we can enter any one of the four different types of

constraints on our new table. A constraint is a property that we can set to tell the database to

enforce some kind of rule on the table that limits (or constrains) the values that can be stored in it.

There are four types of constraints and they are:

 Check constraint—a constraint on a particular column that indicates the acceptable values that

TYBSC-IT (SEM 6) DATA WAREHOUSING

97

WE-IT TUTORILAS PHNO:8097071144/55

can be stored in the column.

 Foreign key—a constraint on a column that indicates a record must exist in the referenced table

for the value stored in this column. We talked about foreign keys back in Chapter 2 when we

discussed the ACME_POS transactional source database. A foreign key is also considered a

constraint because it limits the values that can be stored in the column that is designated as a

foreign key column.

 Primary key—a constraint that indicates the column(s) that make up the unique information

that identifies one and only one record in the table. It is similar to a unique key constraint in

which values must be unique. The primary key differs from the unique key as other table's

foreign key columns use the primary key value (or values) to reference this table. The value

stored in the foreign key of a table is the value of the primary key of the referenced table for the

record being referenced.

 Unique key—a constraint that specifies the column(s) value combination(s) cannot be

duplicated by any other row in the table.

 Indexes

The next tab provided in the Data Object Editor is the Indexes tab.

 Partitions

So now that we have nixed the idea of creating indexes on our staging table, let's move on to the next

tab in the Data Object Editor for our table, Partitions. Partition is an advanced topic that we won't be

covering here but for any real-world data warehouse, we should definitely consider implementing

partitions. A partition is a way of breaking down the data stored in a table into subsets that are stored

separately. This can greatly speed up data access for retrieving random records, as the database will

know the partition that contains the record being searched for based on the partitioning scheme used.

It can directly home in on a particular partition to fetch the record by completely ignoring all the other

partitions that it knows won't contain the record.

 Attribute Sets

The next tab is the Attribute Sets tab. An Attribute Set is a way to group attributes of an object in an

order that we can specify when we create an attribute set. It is useful for grouping subsets of an object's

attributes (or columns) for a later use. For instance, with data profiling (analyzing data quality for

possible correction), we can specify attribute sets as candidate lists of attributes to use for profiling. This

is a more advanced feature and as we won't need it for our implementation, we will not create any

attribute sets.

 Data Rules

TYBSC-IT (SEM 6) DATA WAREHOUSING

98

WE-IT TUTORILAS PHNO:8097071144/55

The next tab is Data Rules. A data rule can be specified in the Warehouse Builder to enforce rules for

data values or relationships between tables. It is used for ensuring that only high-quality data is loaded

into the warehouse. There is a seperate node—Data Rules—under our project in the Design Center that

is strictly for specifying data rules. A data rule is created and stored under this node. This is a more

advanced feature. We won't have time to cover it in this introductory book, so we will not have any data

rules to specify here.

 Data Viewer

The last tab is the Data Viewer tab. We discussed this in Chapter 4 when we covered the Data Object

Editor for viewing cubes and dimensions. This can be useful when we've actually loaded data to this

staging table to view it and verify that we got the results we expected.

Designing our mapping
Now that we have our staging table defined, we are now ready to actually begin designing our

mapping.

Review of the Mapping Editor

In Design Center, navigate to the ACME_DW_PROJECT | Databases | Oracle | ACME_DWH | Mappings

node if it is not already showing. Right-click on it and select New... from the resulting pop up. We will be

presented with a dialog box to specify a name and, optionally, a description of our mapping. We'll name

this mapping STAGE_MAP to reflect what it is being used for, and click on the OK button.

This will open the Mapping Editor for us to begin designing.The Data Object Editor, the Mapping Editor

has a blank area named Mapping where the Data Object Editor called it the Canvas.The Mapping Editor

has an Explorer window in common with the Data Object Editor

the Explorer window in the Mapping Editor is the Properties window. In the Data Object Editor it was

called Configuration. It is for viewing and/or editing properties of the selected element in the Mapping

window. Right now we haven't yet defined anything in our mapping, so it's displaying our overall

mapping properties.

Below the Properties window is the Palette, which displays all the operators that can be dragged and

dropped onto the Mapping window to design our mapping. It is just like the Palette in the Data Object

Editor, but differs in the type of objects it displays.

Creating a mapping
What we just saw was a brief review of the Mapping Editor. Now let's begin to use it to design our

mapping of the staging table. In designing any mapping in OWB, there will be a source(s) that we pull

from, a target(s) that we will load data into, and several operators in between depending on how much

manipulation of data we need to do between source and target. The layout will begin with sources on

the left and proceed to the final targets on the right of the canvas as we design it.

TYBSC-IT (SEM 6) DATA WAREHOUSING

99

WE-IT TUTORILAS PHNO:8097071144/55

Adding source tables

There are a couple of ways we can add a table to our mapping. One way is to use the Explorer window

and the other way is to use the Palette window. In the Explorer window, we will use the Available

Objects tab to find the table that we want to include in our mapping. To find an object in the Explorer,

we have to know what module it is located under. In our case, we know the POS_TRANSACTIONS table

is defined under the ACME_POS module. So let's navigate to the Databases | Non-Oracle | ODBC |

ACME_POS node in the Available Objects tab to find the POS_TRANSACTIONS table entry. Click and

hold the left mouse button on POS_TRANSACTIONS, drag it over to the Mapping window, and release

the left mouse button to drop the table into our mapping.

There are a couple of items to note about how the Mapping Editor window looks. The Properties

window no longer shows the mapping information. It has changed to show the properties of the

POS_TRANSACTION table as it is now highlighted in the Mapping canvas window.

The operators in the Palette are sorted alphabetically, so we'll scroll the window until we see the Table

Operator. Click and drag the Table Operator from the Palette window onto the Mapping window. As

soon as we drag it onto the Mapping window

We're going to stick to the objects already defined for our operators. So we're going to select the ITEMS

table under the ACME_POS entry in the list of table names that the pop-up window presents to us. We

will click on the OK button to include the ITEMS table operator in our mapping.

Adding a target table
Let's now turn our attention to the target for this particular mapping. As this is a staging-related

mapping, we're going to be loading our staging table and so that will become our target. Let's find the

POS_TRANS_STAGE table in the Explorer window. We'll navigate to Databases | Oracle | ACME_DWH |

Tables | POS_TRANS_STAGE in the Explorer, and click and drag the POS_TRANS_STAGE table to the

righthand side of our source tables in the Mapping window.

Connecting source to target
The process of connecting the source to the target is the means of telling the Warehouse Builder which

data fields from the source go in which data fields in the target. We might be tempted to just connect

the data fields from the source tables directly to the corresponding fields in the target.

The Data flow operators section that directly connecting source to target would only work for a one-to-

one mapping between a source table and a target table. Then went on to discuss some of the operators

that can be used for data flows, and one of them was a Joiner operator.An Aggregator operator that can

be used to aggregate data. the Palette window until the Joiner operator is visible, drag this operator

into the Mapping window, and drop it between the sources and target.

Joiner operator attribute groups
We were introduced to the concept of attribute groups in the last chapter when we were looking at

TYBSC-IT (SEM 6) DATA WAREHOUSING

100

WE-IT TUTORILAS PHNO:8097071144/55

DATE_DIM_MAP in the Mapping Editor. It's time to talk about attribute groups again, because we can

see that the Joiner operator has three groups defined, but the attributes in our table operators are all in

one group. The groups in operators we saw are generally input groups, output groups, or both.

To edit it, right-click on the header of the box and select Open Details... to open the Joiner Editor. This

dialog box will allow us to edit the number of groups as well as change the group names if we want

something different from INGRP1 and INGRP2.

The Joiner Editor can be used to edit not only the groups, but also the attributes that compose each

group. So if we right-click inside the Joiner box on a group and select Open Details..., we will get the

same dialog box with just the individual tab selected that corresponds to the group we clicked on.

With the Joiner Editor open, let's click on the Groups tab. We'll click three times on the Add button in

the lower-right corner to add three more groups. Notice that the default names it assigns are INGRP3,

INGRP4, and INGRP5.

Add when we click on the Add button is an input group. Now we'll click on the OK button to close out

the Joiner Editor dialog box.

Connecting operators to the Joiner

The Mapping Editor to go ahead and connect every attribute in the group. If we have several attributes,

this is a convenient way to connect them. So, click and drag INOUTGRP1 of the ITEMS table operator

onto the ITEMS group of the JOINER. Immediately, it will add all the attributes from the ITEMS table to

the ITEMS group in the JOINER and connect each one with a line.

Alternatively, we could have clicked and dragged a line from each attribute in the ITEMS table and

dropped it on the ITEMS group in the JOINER.

Defining operator properties for the Joiner

The Properties window in the Mapping Editor. If the JOINER operator is not already selected, click once

on the header of the box to select it and the Properties window will immediately change to display the

properties of the selected object; in this case it's JOINER. We can see one property mentioned there,

Join Condition. Click on the blank box to the right of the Join Condition label.

Expand the ITEMS group on the left and double-click the ITEMS_KEY attribute to add it to the

expression. As we want every record included where the ITEM_SOLD equals the ITEMS_KEY, we will

include an equal sign next by clicking on the button with the = sign on it. We'll finish this first relation by

expanding the POS_TRANSACTIONS group and double-clicking on the ITEM_SOLD attribute to include

it.

TYBSC-IT (SEM 6) DATA WAREHOUSING

101

WE-IT TUTORILAS PHNO:8097071144/55

The expression could extend past it and still work. But for ease of viewing, we'll enter it vertically

instead of horizontally so that we don't have to scroll.

Now we'll enter:

1.The REGISTER attribute by double-clicking on it in the POS_TRANSACTIONS group.

2. The equal to sign by clicking on the corresponding button.

3. The REGISTERS_KEY attribute by double-clicking on it under the REGISTERS group.

4. This expression is followed by another AND by clicking on the And button.

5. Press the Enter key.

We can click on the Validate button now to make sure the expression we just entered is a valid expression,

meaning that we used the correct SQL syntax. We should get the Validation Successful message.

Click on the OK button and we are done specifying the join condition for the JOINER operator. We can now

see that it filled in the join condition text into the Join Condition entry in the Properties window.

Adding an Aggregator operator

The Aggregator operator requires that we specify a few things for it to function correctly. We have to specify

a group by clause that the Aggregator operator is going to use to group the data, and it will create an output

attribute for every attribute we use in the group by clause. We have to manually add output attributes for

any of the values that are going to be summed up, and then specify the SUM() function to use for them.

A similar process to add the Aggregator operator as we did for the Joiner; drag an AGGREGATOR operator

onto the canvas to the right of the JOINER operator, connect output attributes from the JOINER operator to

the input of the AGGREGATOR operator, define properties for the AGGREGATOR operator, and then connect

the output of the AGGREGATOR operator to the POS_TRANS_STAGE table operator. Here we'll outline the

steps to follow without going into as much detail as we did for the Joiner operator:

Drag an AGGREGATOR operator from the Palette window to the canvas and drop it to the right of the

JOINER operator between that operator and the POS_TRANS_STAGE target operator. You may have to move

the POS_TRANS_STAGE target operator further to the right to make enough room.

Connect the output attributes from the JOINER operator as input to the AGGREGATOR operator by dragging

the OUTGRP1 output group and dropping it on the INGRP1 input group of the AGGREGATOR operator. This

will map every output attribute at once, so we don't have to do each one individually.

We need to remove the line that got dragged to the input of the Aggregator operator for the DATE_SOLD

attribute by clicking on the line and pressing the Delete key, or right-clicking and selecting Delete from the

pop-up menu. Make sure the correct line is selected. Attribute groups can be expanded to spread the lines

apart better so that it's easier to click.

TYBSC-IT (SEM 6) DATA WAREHOUSING

102

WE-IT TUTORILAS PHNO:8097071144/55

Drag a Transformation Operator from the Palette window and drop it on the canvas between the Joiner

operator and the Aggregator operator near the DATE_SOLD attribute. In the resulting pop up that appears,

we'll scroll down the window until the Date() functions appear and then select the TRUNC() function. It

will look like the following:

TRUNC(IN DATE, IN VARCHAR2) return DATE

Click on that line and then click on the OK button to select it. It will drop a TRUNC Transformation Operator

on the canvas.

Connect the DATE_SOLD attribute in the OUTGRP1 group of the Joiner to the D attribute of the INGRP1 of

the TRUNC transformation operator. Then connect the VALUE attribute of the RETURN output group of the

TRUNC operator to the DATE_SOLD attribute of the INGRP1 group of the Aggregator operator.

6. We have our input set for the Aggregator operator and now we need to address the output. Let's

select the Aggregator operator by clicking on the title bar of the window where it says AGGREGATOR.

The Properties window of the Mapping Editor will display the properties for the aggregator. If it

doesn't, then make sure the title bar of the window was selected for the operator and not somewhere

inside the operator.

7. The very first attribute listed is Group By Clause. We'll click on the ellipsis (...) on its right to open the

Expression Builder for the Group By Clause. This is similar to how we launched it earlier to edit the join

condition for the Joiner operator.

Enter the following attributes separated by commas by double-clicking each in the INGRP1 entry in the

left window:

INGRP1.ITEM_NAME , INGRP1.ITEM_CATEGORY , INGRP1.ITEM_SKU , INGRP1.ITEM_BRAND ,

INGRP1.ITEM_LIST_PRICE , INGRP1.ITEM_DEPT , INGRP1.STORE_NAME ,

INGRP1.STORE_NUMBER , INGRP1.STORE_ADDRESS1 , INGRP1.STORE_ADDRESS2 ,

INGRP1.STORE_CITY , INGRP1.STORE_STATE , INGRP1.STORE_ZIP, INGRP1.REGION_NAME ,

INGRP1.COUNTRY , INGRP1.DATE_SOLD.

9. We'll click on the OK button to close the Expression Builder dialog box and looking at the

AGGREGATOR now, we can see that it added an output attribute for each of these attributes in our

group by clause. This list of attributes has every attribute needed for the POS_TRANS_STAGE operator

except for the two number measures, SALE_QUANTITY and SALE_DOLLAR_AMOUNT. So let's add them

manually.

10. We'll right-click on the OUTGRP1 attribute group of the AGGREGATOR operator and select Open

Details... from the pop up. We used this editor earlier for the Joiner to edit the groups, and now we're

going to use it for the Aggregator to edit the attributes in a group.

We'll click on the Output Attributes tab, and then on the Add button twice to add two new output

attributes. Let's click on the first one it added (OUTPUT1) and change its name to SALES_QUANTITY and

leave the type NUMBER with 0 for precision and scale. We'll click on the second one (OUTPUT2) and

TYBSC-IT (SEM 6) DATA WAREHOUSING

103

WE-IT TUTORILAS PHNO:8097071144/55

change the name to AMOUNT and make it type NUMBER with precision 10 and scale 2.

11. Now we need to apply the SUM() function to these two new attributes, so we'll click on

SALES_QUANTITY in the OUTGRP1 group of the Aggregator. In the Properties window of the Mapping

Editor on the left, click on the ellipsis beside the Expression property to launch the Expression editor for

this attribute.

12. We'll immediately notice something different. The Expression editor for output attributes of an

Aggregator is custom built to apply aggregation functions. We'll select SUM from the Function drop-

down menu, ALL from the ALL/DISTINCT drop-down menu, and SALES_QUANTITY from the Attribute

drop-down menu. We'll then click on the Use Above Values button and the expression will fill in

showing the SUM function applied to the SALES_QUANTITY attribute.

We'll click on the OK button to save the expression and close the dialog box. Then we'll do the

same thing for the AMOUNT output attribute of the Aggregator, but will select AMOUNT for the

Attribute drop-down menu.

We're almost done now. We've included:

• The source tables we need to pull the data from

• The target table we're going to store the data in

• A Joiner operator to join together the source tables

• An Aggregator to sum up the data

Make the following attribute connections between the Aggregator and the POS_TRANS_STAGE table by

clicking and dragging a line between attributes. We'll do individual attributes this time, not the whole group.

• SALES_QUANTITY to SALE_QUANTITY

• AMOUNT to SALE_DOLLAR_AMOUNT

• DATE_SOLD to SALE_DATE

• ITEM_NAME to PRODUCT_NAME

• ITEM_SKU to PRODUCT_SKU

• ITEM_CATEGORY to PRODUCT_CATEGORY

• ITEM_BRAND to PRODUCT_BRAND

• ITEM_LIST_PRICE to PRODUCT_PRICE

• ITEM_DEPT to PRODUCT_DEPARTMENT

TYBSC-IT (SEM 6) DATA WAREHOUSING

104

WE-IT TUTORILAS PHNO:8097071144/55

• STORE_NAME to STORE_NAME

• STORE_NUMBER to STORE_NUMBER

• STORE_ADDRESS1 to STORE_ADDRESS1

• STORE_ADDRESS2 to STORE_ADDRESS2

• STORE_CITY to STORE_CITY

• STORE_STATE to STORE_STATE

• STORE_ZIP to STORE_ZIPPOSTALCODE

• REGION_NAME to STORE_REGION

• COUNTRY to STORE_COUNTRY

TYBSC-IT (SEM 6) DATA WAREHOUSING

105

WE-IT TUTORILAS PHNO:8097071144/55

Unit.5

5.1 ETL: Transformations and Other
Operators
We will be introduced to the concept of transformations and operators that are available in OWB, which

can be used for transforming and manipulating data between source and target. We'll do this by

building additional mappings for loading data into our STORE and PRODUCT dimensions, and loading of

our SALES cube. Along the way, we'll get to build a quick mapping for creating and loading a table that

will be used as a lookup table. As we build the mappings, we'll discuss in more detail some of the

additional operators we'll need. Thus, we will begin to see the real power and flexibility the Warehouse

Builder provides us for loading a data warehouse. When we complete the mappings in this chapter, we

will have a complete collection of objects and mappings. We can deploy and run these to build and load

our data warehouse.

STORE mapping
We'll follow the procedure in the previous chapter to create a new mapping. In the Design Center, we

will right-click on the Mappings node of the ACME_DW_PROJECT | Databases | Oracle | ACME_DWH

database and select New.... Enter STORE_MAP for the name of the mapping and we will be presented

with a blank Mapping Editor window.

Adding source and target operators
we loaded data into the POS_TRANS_STAGE staging table with the intent to use that data to load our

dimensions and cube. We'll now use this POS_TRANS_STAGE table as our source table. Let's drag this

table onto the mapping from the Explorer window. Review the Adding source tables section of the

previous chapter for a refresher if needed.

The target for this mapping is going to be the STORE dimension, so we'll drag this dimension from

Databases | Oracle | ACME_DWH | Dimensions onto the mapping and drop it to the right of the

POS_TRANS_STAGE table operator. Remember that we build our mappings from the left to the right,

with source on the left and target on the right.

Now that we have our source and target included, let's take a moment to consider the data elements

we're going to need for our target and where to get them from the source. Our target for this mapping,

the STORE dimension, has the following attributes for the STORE level for which we'll need to have

source data:

 NAME

TYBSC-IT (SEM 6) DATA WAREHOUSING

106

WE-IT TUTORILAS PHNO:8097071144/55

 STORE_NUMBER

 ADDRESS1

 ADDRESS2

 CITY

 STATE

 ZIP_POSTALCODE

 COUNTY

 REGION_NAME

For the REGION level, we'll need data for the following attributes:

 NAME

 DESCRIPTION

 COUNTRY_NAME

For the COUNTRY level, we'll need data for the following attributes:

 NAME

 DESCRIPTION

The complete and fully expanded STORE dimension in our

mapping appears like the following screenshot:

TYBSC-IT (SEM 6) DATA WAREHOUSING

107

WE-IT TUTORILAS PHNO:8097071144/55

We might be tempted to include the ID fields in the above list of data elements for populating, but

these are the attributes that will be filled in automatically by the Warehouse Builder.

Now that we know what we need to populate in our STORE dimension, let's turn our attention over to

the POS_TRANS_STAGE dimension for the candidate data elements that we can use. In this table, we

see the following data elements for populating data in our STORE dimension:

 STORE_NAME

 STORE_NUMBER

 STORE_ADDRESS1

 STORE_ADDRESS2

 STORE_CITY

 STORE_STATE

 STORE_ZIPPOSTALCODE

 STORE_REGION

 STORE_COUNTRY

It is easy to see which of these attributes will be used to map data to attributes in the STORE level of

the STORE dimension. They will map into the corresponding attributes in the dimension in the STORE

group. We'll need to connect the following attributes together:

 STORE_NAME to NAME

 STORE_NUMBER to STORE_NUMBER

 STORE_ADDRESS1 to ADDRESS1

 STORE_ADDRESS2 to ADDRESS2

 STORE_CITY to CITY

 STORE_STATE to STATE

 STORE_ZIPPOSTALCODE to ZIP_POSTALCODE

 STORE_REGION to REGION_NAME

We'll see how to implement the necessary transformations in the mapping to correct them:

TYBSC-IT (SEM 6) DATA WAREHOUSING

108

WE-IT TUTORILAS PHNO:8097071144/55

 STORE_NAME, STORE_NUMBER: We need to trim spaces and change these attributes to uppercase

to facilitate queries as they are part of the business identifier

 STORE_ADDRESS1, ADDRESS2, CITY, STATE, and ZIP_POSTALCODE: We need to trim spaces and

change the STATE attribute to uppercase

 STORE_REGION: We need to trim spaces and change this attribute to uppercase.

Adding Transformation Operators
The Transformation Operator is a generic operator that is used to represent several built-in or custom-

built functions or procedures for operating on data in order to make some kind of change or

transformation to it. Let's take a look at the available list of transformations. In the Design Center, we

can look at a list of available transformations either custom or pre-built in the database in the Global

Explorer panel under Public Transformations.

We are primarily interested in the Character category because that is where we'll find functions that

operate on character strings, and that can convert them to uppercase and remove whitespace.

In the Design Center, we can look at a list of available transformations either custom or pre-built in the

database in the Global Explorer panel under Public Transformations.

The Transformations heading under the ETL Design Reference section of the online help table of

contents. You can access this by selecting Help | Table of Contents from the main menu of the Design

Center After dropping the Transformation Operator on the mapping, it will pop up a dialog box where

we select the transformation we want to use.

TYBSC-IT (SEM 6) DATA WAREHOUSING

109

WE-IT TUTORILAS PHNO:8097071144/55

We have two options in this dialog box—create an unbound operator (basically, one that is not tied to

an existing repository object) or select from an existing object. We'll select an existing one because we

know that the function that will suit our purpose already exists. We'll scroll the window down until we

see the TRIM() function.

Searching for a function

If we want to find the function quickly, rather than manually scrolling the window down, there's a not-

so-obvious feature of this dialog box called the search capability. If we start typing the name of the

function we want, it will automatically scroll down the list with each letter typed, until it settles on the

one we want. For example, type a T and it highlights the very first line, TRANSFORMATIONS. Type an R

next and it stays on that line because transformations start with those two letters. But type an I next

and it jumps right down to the TRIM function we need. This option is much better to quickly find what

we're looking for than manually scrolling the window.

The TRIM function in the window and then on the OK button. This will display a TRIM Transformation

Operator window on our mapping. It is like any other operator in that it has attributes, which are in

groups depending on whether they are input, output, or both. In this case, a TRIM operator has one

input attribute and one output attribute. The input attribute is the string we want to trim the

whitespace from and the output attribute represents the result of applying the TRIM operator to the

input string.

Upper and lowercase issues

An UPPER transformation added for our STORE_NAME, so let's drag another Transformation Operator

onto the mapping and drop it to the right of the TRIM operator. It is perfectly acceptable and very

common, in fact, to have to map the output from one Transformation Operator into the input of

another Transformation Operator. We will select the UPPER() function this time from the resulting pop-

up window. It is close to the TRIM function in the dialog box.

The UPPER() function is similar to the TRIM() function in the number of arguments it takes and the value

it returns—which is one in both the cases. It is different in that the UPPER() function does not specify

the type of the arguments as the TRIM() function does. We can see from the previous screenshot that

the type is listed as UNSPECIFIED.

The database will fill up a char string with blanks up to the maximum size of the string if you store a

string that is smaller than the defined size of the char string. A TRIM() will have no effect on this kind of

field. An UPPER() function, on the other hand, will work on a string of any type.

TYBSC-IT (SEM 6) DATA WAREHOUSING

110

WE-IT TUTORILAS PHNO:8097071144/55

The placement of the operators on the mapping will vary, but it should generally be similar to the

POS_TRANS_STAGE mapping table on the left as input, the TRIM and UPPER operators in the middle

connecting the STORE_NAME attribute from input to the NAME attribute of the STORE group in the

STORE dimension.

The following attributes of the POS_TRANS_STAGE mapping table operator will provide the input for the

five TRIM operators:

 STORE_ADDRESS1

 STORE_ADDRESS2

 STORE_CITY

 STORE_STATE

 STORE_ZIPPOSTALCODE

The output of the TRIM operators for all but the STORE_STATE attribute will be connected directly to

STORE level attributes of the STORE dimension as follows:

 ADDRESS1

 ADDRESS2

 CITY

 ZIP_POSTALCODE

The TRIM output for the STORE_STATE attribute will be connected to the UPPER Transformation

Operator, and the output from the UPPER operator will be connected to the STATE attribute in the

STORE dimension.

The STORE_REGION attribute to the STORE level, and map both the REGION and COUNTRY levels.

Before continuing, let's save our work so far with the Mapping | Save All menu entry on the Mapping

Editor.

the REGION level this store is located. Looking at the REGION level we can see that there is a

COUNTRY_NAME located there, which indicates the country from the COUNTRY level where the region

TYBSC-IT (SEM 6) DATA WAREHOUSING

111

WE-IT TUTORILAS PHNO:8097071144/55

is located. In terms of our mapping, this determines where we map the STORE_REGION and

STORE_COUNTRY attributes to.

The first mapping change we'll do for the region is to finish up the STORE level attributes by mapping

the STORE_REGION from the stage table to the REGION_NAME attribute in the STORE dimension,

STORE level. We indicated earlier that names should be capitalized and spaces trimmed, so we'll drag

two more Transformation Operators into our mapping—TRIM and UPPER—and map the STORE_REGION

to the TRIM, the TRIM to the UPPER, and the UPPER to the REGION_NAME field.

The STORE level except for the COUNTY attribute, and we still have this attribute plus the

REGION and COUNTRY levels to complete. At this point, we've become more proficient in

doing our mapping and including transformations. So we'll just continue to the REGION level

and add the following connections and transformations without having to walk through each

one in detail:

• STORE_REGION to NAME in the REGION level using TRIM and UPPER transformations

• STORE_REGION to DESCRIPTION in the REGION level using a TRIM transformation

• STORE_COUNTRY to COUNTRY_NAME in the REGION level using TRIM and UPPER

transformations

• STORE_COUNTRY to NAME in the COUNTRY level using TRIM and UPPER transformations

• STORE_COUNTRY to DESCRIPTION in the COUNTRY level using a TRIM transformation

Our STORE dimension is now mapped for every attribute except for the COUNTY attribute. We've saved

this one for last because it is the most complex of our attributes to map for this dimension. The reason is

that we don't have an exact match with an attribute from our input staging table to use.

Using a Key Lookup operator
Key Lookup operators, as the name implies, are used for looking up information from other sources

based on some key attribute(s) in a mapping. This is exactly what we will need to do to get the

information for the COUNTY attribute of our STORE dimension. However, only tables, views, dimensions,

and cubes can be used as the source for this operator. This means we need a table that can be used to

look up the required county information.

Creating an external table

TYBSC-IT (SEM 6) DATA WAREHOUSING

112

WE-IT TUTORILAS PHNO:8097071144/55

External tables are created under the Oracle | ACME_DWH | External Tables node in the Design Center,

so we'll right-click on it and select New... from the pop-up menu. This will launch the External Table

wizard, which will guide us through the process. It is a three-step process that involves providing a name

to use for the external table, specifying the file to use, and specifying the default location. The steps are

as follows:

 By clicking on Next on the Welcome screen, we come to the screen labeled Step 1. We'll name

this external table COUNTIES and click on Next to continue to the screen labeled Step 2.

 In this step we'll select the file that contains the metadata for the external table. It will display

the name of any files that have been defined in our Files module. We can see our

COUNTIES_CSV file listed, so we'll select that and click on Next to continue.

 This brings us to the screen labeled Step 3 where we will select the default location to use for

this table. The drop-down menu on this screen will display the file locations that have been

defined in the Design Center. We will select the ACME_FILES_LOCATION entry, which is for the

files that exist for this project. Clicking on Next will bring us to the Summary screen where we

can verify the information we just specified.

 When we click on the Finish button, it will create a new entry called COUNTIES under the

External Tables node in our project in the Design Center.

Creating and loading a lookup table
 Now that we have our source table defined for our new lookup table, let's create a new

mapping called COUNTIES_LOOKUP_MAP using the same method we've used previously. The

steps to create a lookup table are:

 Right-click on the Mappings node, select New..., enter COUNTIES_LOOKUP_MAP in the name

field, and click on the OK button.

 In the Mapping Editor that pops up, let's drag an External Table Operator from the Palette

window onto the mapping.

 On the Add External Table Operator pop-up window that appears, our COUNTIES external table

is visible. We will select that and click on the OK button to continue. This will drop an External

Table Operator on our mapping that is bound to our COUNTIES external table.

 We need to get that data loaded into a regular table in the database, so next we'll drag a Table

Operator onto the mapping.

 In the resulting Add Table Operator pop up that appears, we specify what table we want to add.

We've seen this add operator dialog box before, but we've always been choosing an existing

object to add. This time we're going to check the first option to Create unbound operator with

no attributes and we'll give it the name COUNTIES_LOOKUP by typing that name into the box.

TYBSC-IT (SEM 6) DATA WAREHOUSING

113

WE-IT TUTORILAS PHNO:8097071144/55

 We'll click on OK and it will drop a Table Operator onto our mapping with no attributes defined

in it.

If we look in the ACME_DWH | Tables node, there is no table named COUNTIES_LOOKUP. The steps to

create a new table object and to bind this operator to it are as follows:

 When we right-click on the unbounded operator, the pop-up menu has a menu selection called

Create and Bind.... With this option we will create a new table object in the OWB Tables node

and bind this operator to it.

 The name is the same as what we gave to the operator. We could name the underlying bound

table something different, but it's best to leave it with the same name for clarity.

 The Create in: text field is to specify the module in which to create the new table under our

project in the Design Center. It has defaulted to the Tables node under the current ACME_DWH

module, and that is exactly where we want it. The drop-down option provides a listing of every

Tables node in all the modules that are currently defined in our current project if we want to

create it in one of those other modules.

 When we click on the OK button on this dialog box, a table is created in the Tables node and is

bound to the operator.

To verify that, we can navigate to the ACME_DWH | Tables node under our database module and there

is the new COUNTIES_LOOKUP table now. This completes the mapping and table creation. Our new

table is now ready to include in a mapping as a Key Lookup operator.

When we use the option to create a table in this manner, it creates a basic, no-frills table with no

constraints defined on it. To add a primary key, we'll perform the following steps:

 In the Design Center, open the COUNTIES_LOOKUP table in the Data Object Editor by double-

clicking on it under the Tables node.

 Click on the Constraints tab.

 Click on the Add Constraint button.

 Type PK_COUNTIES_LOOKUP (or any other naming convention we might choose) in the Name

column.

 In the Type column, click on the drop-down menu and select Primary Key.

 Click on the Local Columns column, and then click on the Add Local Column button.

 Click on the drop-down menu that appears and select the ID column.

TYBSC-IT (SEM 6) DATA WAREHOUSING

114

WE-IT TUTORILAS PHNO:8097071144/55

 Close the Data Object Editor.

Retrieving the key to use for a Lookup Operator
The STORE_NUMBER data element contained in the STORES source table has a code that indicates the

county the store is located in for stores in the USA. This is actually a fixed known format, and the

positions three through six of the number are actually the code for the location of the store in the

county. This number is actually the ID number found in the counties.csv flat file, and which is the ID

in the lookup table. So, we now have a key value that we can use to look up the county. However, there

are still some more issues we have to work out before we can use it.

The county ID is only a portion of the entire STORE_NUMBER field, so we can't just use the

STORE_NUMBER from input as the direct key to a Key Lookup Operator. We will have to extract the ID

number out of it and then convert it to a number before we can use it to look up the county. This implies

that some more transformations will be needed, so let's work on getting that county ID extracted from

the STORE_NUMBER field.

Adding a SUBSTR Transformation Operator
The Transformation Operators available to us in OWB include a SUBSTR (or substring) transformation

that will do exactly what we need to extract the county ID value out of the STORE_NUMBER field. The

SUBSTR transformation takes three parameters—the string we want to extract the substring from, a

number indicating the start position of the substring within the string, and a number indicating the

length of the substring to extract.

let's drag a Transformation Operator onto the STORE_MAP mapping between the POS_TRANS_STAGE

table and the STORE dimension below all the other Transformation Operators. On the resulting Add

Transformation Operator pop-up window, select the SUBSTR() transformation.

When first dropped on the mapping, this operator may not look exactly like the above screenshot in

which the operator is fully expanded. To see the whole operator contents at once, we can click and drag

an edge to manually make the window bigger or click on the symbol in the upper-right corner with the

arrow pointing upwards

.

TYBSC-IT (SEM 6) DATA WAREHOUSING

115

WE-IT TUTORILAS PHNO:8097071144/55

Adding a Constant operator
We'll click and drag a Constant operator onto the mapping to the left of the SUBSTR Transformation

Operator. We can see that it has an output group called OUTGRP1 by default. We'll right-click on it and

select Open Details... from the pop-up menu. This opens an editor on the CONSTANT operator.

The tab that is highlighted when the dialog box opens depends on what was right-clicked. As we can see,

this editor has tabs for editing the Name of the operator, the Groups, and the Output Attributes of the

output group. The Constant operator only allows output, so there is no input group defined or allowed.

If it was an operator that allowed input, such as a function or procedure that took parameters (for

example, the SUBSTR operator), there would be an additional tab for Input Attributes

Clicking on the Output Attributes tab we see that there are no attributes currently existing for this

operator. This is where we will add our constants that we need for the SUBSTR operator.

To add an attribute, click on the Add button.

change the name of this first constant attribute to reflect the destination for this value, that is the

position attribute of the SUBSTR operator, so we'll name it POSITION also. Click on the default name,

OUTPUT1, and it will highlight the name and we can then type in what we want it to be. We'll change

the name to position.

we need to make sure the data type is correct. The position value to which we're going to map this

constant in the SUBSTR operator is defined as a NUMBER with no precision or scale specified.

The Output Attributes tab of the CONSTANT Editor dialog box. We'll click on the Add button once more

and change the name of this attribute to LENGTH to reflect its purpose. We'll leave the data type set to

NUMBER, and the default precision and scale set to zero as we did for the POSITION attribute. We'll

click on the OK button.

The Editor dialog box does not include that information. This is set via another property of the

attributes, which is available to us in the Attribute Properties window on the left of the Mapping Editor.

So we'll click on the first attribute in the CONSTANT operator, the POSITION, and look for the attribute

property called Expression.

The next step is to connect our constants to the corresponding attributes of our SUBSTR operator. We'll

drag a line from POSITION in the CONSTANT operator to the POSITION attribute of the SUBSTR

operator, and from the LENGTH attribute to the SUBSTRING_LENGTH attribute.

Adding a TO_NUMBER transformation
The SUBSTR value is ready and we can use it to look up the county ID, but there's one more

transformation we need to apply before we can use it to look up the county name.

TYBSC-IT (SEM 6) DATA WAREHOUSING

116

WE-IT TUTORILAS PHNO:8097071144/55

it needs to be converted into a number to match the data type of the ID field in the COUNTIES_LOOKUP

table. To do this, we will use the TO_NUMBER() function. So let's drag a Transformation Operator onto

our mapping to the right of the SUBSTR operator and select TO_NUMBER from the resulting pop up.

This operator needs three parameters, only one of which is absolutely necessary—the expression we

wish to convert to a number. The other two parameters are optional and include a format string that we

can use if we have a particular format of number we want (such as a decimal point in a certain place)

and a parameter that allows us to set a certain national language format to default to if it's different

from the language set in the database. We'll just map the input expression because our number is a

straight integer format number. So let's draga line from the VALUE attribute of SUBSTR to the EXPR

input attribute of the TO_NUMBER operator.

Adding a Key Lookup operator
After that little side trip to quickly create our lookup table and add a SUBSTR operator with a

TO_NUMBER transformation to convert the result to a number, we can now add a Key Lookup operator

to our mapping for looking up the county name. Let's drag a Key Lookup operator onto the mapping and

drop it to the right of the TO_NUMBER operator. We can find the Key Lookup operator in the Palette

window just as we did for the other operators we've added. After we drop it in the mapping, the

KEY_LOOKUP Wizard is launched and it presents us with the Welcome screen. The wizard will guide us

step-by-step through the process of defining our key lookup. It is composed of six steps, which we can

see on the opening Welcome screen.

 After the welcome screen, the first step asks us for a name for this Key Lookup. It has a default

name of KEY_LOOKUP. We'll change it to COUNTIES_LOOKUP and click on the Next button to

proceed to the screen labeled Step 2.

 This screen indicates that Key Lookup operators require one input and one output group, and

here we have an opportunity to rename the groups if we desire. We'll leave them with their

default names INGRP1 and OUTGRP1, and click on Next to continue.

 The next screen labeled Step 3 asks us to select one or more operators to map into the input

group of the Key Lookup operator. This is where we will specify that the output (or return value)

of the TO_NUMBER operator should be the value to use as input. We will choose the output

attribute from that operator and it will create an input operator in the Key Lookup to match it.

We'll look for the TO_NUMBER operator in the left window. We will scroll it down if it's not

visible and expand it by clicking on the plus sign, and then we will expand the RETURN entry by

clicking on the plus sign. We'll click on the VALUE attribute of the TO_NUMBER operator to

select it and will click on the right arrow (>) to assign it to the INGRP1 of the

COUNTIES_LOOKUP Key Lookup operator.

TYBSC-IT (SEM 6) DATA WAREHOUSING

117

WE-IT TUTORILAS PHNO:8097071144/55

 Now we've indicated that we want to use the output value from our TO_NUMBER operator to

be the input value (or key) for the lookup operator. We'll click on Next and in the screen labeled

Step 4 we will specify in which object to look up the value.

 The object can be a table, view, dimension, or cube object. In the screen labeled Step 4, we will

select our new lookup table. So clicking on the drop-down menu at the top, we expand the

ACME_DWH entry and see that it lists all the available tables, views, dimensions, and cubes in

our project. We'll select the COUNTIES_LOOKUP table.

 We'll then click in the first row of the Lookup Table Key column. In the resulting drop-down

menu that appears (which may take a moment or two to appear, so we'll be patient), we'll

select the primary key we defined on the table. We could also have selected an individual

column if we did not have a primary key on the table.

 Having selected the primary key, we now have to specify an input attribute. We'll click in that

box and see that it has added a row beneath with the ID, which shows as the column to use for

the Lookup Table Key. Now we need to select the Input Attribute in the row in order to select

the column from input that we want to use to match to this key column. This would be the

VALUE attribute from our TO_NUMBER operator that we used in step 3, so we'll select that

from the resulting drop-down menu.

 We will click on the Next button to proceed to the final step where we will specify

what to return if no record is found in the lookup table. Here we are only concerned

with the COUNTY_NAME column as that is the value we need to map to the SALES cube.

We'll specify a default value of UNKNOWN rather than just leave it NULL. So we'll click on

NULL that currently appears as the default for the COUNTY_NAME value and type in

'UNKNOWN' in the box.

 We will click on the Next button to proceed to the Summary screen.

 We will click on the Finish button and the wizard ends and drops a Key Lookup

operator on our mapping with a connection line already drawn from the output

attribute of the TO_NUMBER operator.

 Now connect the COUNTY_NAME field from this Key Lookup operator to the

COUNTY attribute in the STORE level of the STORE dimension and we are done with

this mapping.

PRODUCT mapping
 The mapping for the PRODUCT dimension will be similar to the STORE mapping, so we won't

cover it in as much detail here. We'll open the Design Center if it's not already open and create a

new mapping just as we did for the STORE mapping earlier and the STAGE_MAP mapping.

TYBSC-IT (SEM 6) DATA WAREHOUSING

118

WE-IT TUTORILAS PHNO:8097071144/55

 the POS_TRANS_STAGE table from the Explorer window and drop it on the left of the mapping,

and drag the PRODUCT dimension from ACME_DWH | Dimensions and drop it to the right of

the mapping.

The ITEM level and jump right to listing the attributes from the source to the target along with the

issues we'll have to address with the data elements for this level:

 PRODUCT_NAME to NAME (in the ITEM level)—needs trimmed spaces and conversion to

uppercase

 PRODUCT_NAME to DESCRIPTION (in the ITEM level)—needs trimmed spaces

 PRODUCT_SKU to SKU—needs trimmed spaces and conversion to uppercase

 PRODUCT_PRICE to LIST_PRICE—no transformation needed

 PRODUCT_BRAND to BRAND_NAME—needs trimmed spaces and conversion to uppercase.

For the BRAND level, we need to map the NAME, DESCRIPTION, and CATEGORY_NAME as follows:

 PRODUCT_BRAND to NAME (in the BRAND level)—needs trimmed spaces and conversion to

uppercase

 PRODUCT_BRAND to DESCRIPTION (in the BRAND level)—needs trimmed spaces

 PRODUCT_CATEGORY to CATEGORY_NAME—needs trimmed spaces and conversion to uppercase

For the BRAND level, we need to map the NAME, DESCRIPTION, and CATEGORY_NAME as follows:

 PRODUCT_BRAND to NAME (in the BRAND level)—needs trimmed spaces and conversion to

uppercase

 PRODUCT_BRAND to DESCRIPTION (in the BRAND level)—needs trimmed spaces

 PRODUCT_CATEGORY to CATEGORY_NAME—needs trimmed spaces and conversion to uppercase

SALES cube mapping
Turning our attention to the cube, we have one more mapping to create. It will be created in the same

way as we created the previous maps, but let's call this one SALES_MAP. In this mapping, we will need to

draw data from the POS_TRANS_STAGE table as input as we did for other two dimension maps, and we

will have the SALES cube as the output target to load our data. Let's drag each of these onto our

mapping using Table Operator for the POS_TRANS_STAGE table and Cube Operator for the SALES

cube.

TYBSC-IT (SEM 6) DATA WAREHOUSING

119

WE-IT TUTORILAS PHNO:8097071144/55

The POS_TRANS_STAGE table is very familiar to us as we have used it for the two dimensions, but the

SALES cube is new.

Dimension attributes in the cube
Each dimension is represented in the cube attributes by a surrogate identifier, which is the primary key

for the dimension, and the business identifier(s) defined for the dimension. They identify the dimension

record for this cube record and the surrogate identifier will be used as the foreign key to actually link to

the appropriate dimension record in the database. Let's take a look at these attributes for the

dimensions.

For the PRODUCT dimension, we have seen three attributes earlier that are product related—

PRODUCT_NAME, PRODUCT_SKU, and PRODUCT. If we were to open our PRODUCT dimension in the Data

Object Editor to view its attributes, we wouldn't see any attributes with exactly these names. The

Warehouse Builder has provided us with attributes that represent the corresponding attributes from the

dimension, but with a slightly different naming scheme. The PRODUCT_NAME and PRODUCT_SKU

attributes correspond to the NAME and SKU attributes from the dimension that are the business

identifiers we defined. The PRODUCT attribute corresponds to the ID attribute that was created

automatically for us as the surrogate identifier for the dimension.

Renaming dimension attributes

The names for dimension attributes in cubes that OWB comes up with can be

changed if we desire. We would just have to right-click on the name in the cube

operator in the mapping and select Open Details... from the pop-up menu. On the

Input/Output tab, we would just click on the name and type a new name. Of

course, we would have to make sure we didn't choose something already taken.

But if we do, the Warehouse builder will definitely let us know immediately by

popping up an error dialog box, and will change the name right back to what it was

and give us another chance.

One issue is that we didn't create that dimension manually; it was created for us by the Time Dimension

Wizard.

the DATE_DIM dimension by opening it in the Data Object Editor. To open it in the Data Object Editor,

navigate in the Design Center to ACME_DWH | Dimensions |DATE_DIM and double-click to open it.

Looking at the Attributes tab.

Measures and other attributes in the cube
Two of the remaining attributes we can see in the SALES cube are the measures we defined for our

cube—the quantity of the items sold and the dollar amount of the sale. We specified these names

explicitly in the Cube Wizard when we defined our cube

TYBSC-IT (SEM 6) DATA WAREHOUSING

120

WE-IT TUTORILAS PHNO:8097071144/55

We can see one final attribute that we haven't accounted for yet, and that is called ACTIVE_DATE. It's

created automatically for us and is designed to support Type 2 Slowly Changing Dimensions (SCD). It is

used as the time to determine the active record in a Type 2 SCD.

Mapping values to cube attributes
Now that we've taken a look at the attributes in our cube, we need to turn our attention to getting

values mapped to them. We'll begin by mapping values for the measures because they are the simplest,

and then proceed to map values for the two dimensions we created mappings for earlier, the PRODUCT

and STORE. We saved the DATE_DIM dimension for last because this will introduce us to another

operator type that we haven't seen yet, and this operator will be needed to derive the code for the

DATE_DIM dimension.

Mapping measures' values to a cube
The measures that get mapped to a cube are most often numbers, so we don't have to be concerned

with the TRIM and UPPER operators for them. Sometimes we may need to do calculations on values

from input before storing them in output, but in our case now we just want to map the values from the

input as they are. The SALE_QUANTITY from our POS_TRANS_STAGE table is going to provide the value

for the QUANTITY in the SALES cube, and the SALE_DOLLAR_AMOUNT is going to supply the value for

the SALES_AMOUNT attribute.

We'll drag a line directly from SALE_QUANTITY to QUANTITY, and another line directly from

SALE_DOLLAR_AMOUNT to SALES_AMOUNT. This completes the measures. We saw earlier that the

ACTIVE_DATE attribute didn't need anything mapped to it, so we'll move right to the dimensions.

Mapping DATE_DIM values to the cube
We saw earlier that the DATE_DIM_DAY_CODE was the business identifier value for the DATE_DIM

dimension, so we need to map a value to it. Looking at our POS_TRANS_STAGE mapping table for input,

the only date-related value we have is the SALE_DATE field. However, the DATE_DIM_DAY_CODE field is

not defined as a DATE field; it's defined as a NUMBER field. We can't just drag a date field to a number

field. Well, we can (the Mapping Editor will let us), but when we validate the mapping we'll get an error.

We will discuss the concept of validation in greater detail in the next chapter. It is the process the

Warehouse Builder uses to check a mapping for various error conditions. Date fields cannot be directly

converted into numbers in the Oracle Database, and so that would generate an error

validate the mapping by selecting the Validate menu entry under the Mapping main menu, or by

pressing the F4 key. The result, as it initially appears in the Generation Results window at the

bottom of the Mapping Editor

Mapping an Expression operator

Let's now turn our attention back to the Mapping Editor and map the SALE_DATE to the cube

using this expression. To include an expression like the above in our mapping, the Mapping Editor

TYBSC-IT (SEM 6) DATA WAREHOUSING

121

WE-IT TUTORILAS PHNO:8097071144/55

provides an Expression operator in the Palette Window

The steps to perform for the required expression are:

Drag the Expression operator onto our mapping, and drop it between our source and target

operators. Initially, it doesn't display any defined attributes, but it does have two groups defined—

an input group, INGRP1—and an output group, OUTGRP1. Expression operators are for defining any

type of valid Oracle PL/SQL expression and, therefore, provide us tremendous flexibility in defining

our own transformations, which we will do now.

Let's drag the SALE_DATE from the POS_TRANS_STAGE mapping table to the INGRP1 of the

EXPRESSION operator we just dropped into our mapping. This will now make the SALE_DATE

available to us to use in the expression.

First, we need to create an output attribute that will hold the results of our expression. It will be

used to map to the cube. Right-click on OUTGRP2 and select Open Details... from the pop-up

menu.

This will display an Editor window for the expression, so we'll click on the Output Attributes tab

because we need to add an attribute as output. It is initially blank as no attributes are defined, so

we click on the Add button to add an attribute. It will add an attribute with a default name of

OUTPUT1 and a default data type of NUMBER. The default data type in this case happens to be

exactly what we need. This value will be mapped to the DATE_DIM_DAY_CODE attribute of the

SALES cube, and this one is also defined as a number.

We could leave the name as the default of OUTPUT1, but that is so non-descriptive! Let's change it

so that it indicates better what value it will be creating for us. We'll name it DAY_CODE by clicking

on the name and just typing in the new name in the EXPRESSION Editor.

We'll click on the OK button to close the Editor window and now our EXPRESSION will look similar

to the following when fully expanded:

We can now drag a line from the DAY_CODE of our EXPRESSION to the DATE_DIM_DAY_CODE

attribute of our SALES cube. However, we still might have a line connecting the SALE_DATE directly

to the DATE_DIM_DAY_CODE attribute from our little investigation earlier about checking out the

validation error. If so, we can just click on that line and press the Delete key, or right-click and

select Delete to remove it.

We have not yet told the Expression operator what expression it needs to use to produce the

desired output. This is the expression we got out of the User's Guide that we saw earlier. In

Expression operators, the expression to use is stored as a property of the output attribute that

we've defined. So let's click on the DAY_CODE attribute in the EXPRESSION operator and turn our

attention to the property window of the Mapping Editor. It is now labeled as Attribute Properties

TYBSC-IT (SEM 6) DATA WAREHOUSING

122

WE-IT TUTORILAS PHNO:8097071144/55

The very first property shown is Expression where we will enter the expression to use. We'll click in

the blank area to the right of the Expression label in the Attribute Properties window and it

changes to allow us to enter text into that block. We could just enter it directly. For simple

expressions this works well, but for most expressions we'll want to make use of the powerful

Expression Builder tool that the Warehouse Builder provides to construct expressions. We can

launch the Expression Builder by clicking on the button with three dots to the right of the

Expression input field that appeared when we clicked on it. The Expression Builder dialog box

appears and we can create our expression.

The next item to enter is the name of the input to use and for that we want to specify the

SALE_DATE input attribute. This is the real benefit of using the Expression Builder. We can now

just double-click on the SALE_DATE attribute under the INGRP1 heading in the left pane to enter it

into our expression at the point where the cursor is currently located, which should be right after

the last open parenthesis we entered.

We'll now finish entering our expression by typing in the following text to close out the expression:

,'YYYYMMDD'))

We'll click on the Validate button to make sure our expression is correctly entered and our

Expression Builder window

We'll click on the OK button to close the Expression Builder and our mapping now validates

successfully.

Features and benefits of OWB

the option to implement our cubes and dimensions either relationally with ROLAP or fully multi-

dimensionally with MOLAP, OWB allows us to design one way in OWB and implement either way in

the database with a simple change of a storage option.

• By providing us the ROLAP option, the Oracle Warehouse Builder opens to us the design

features of cubes and dimensions even though we'll be implementing them relationally with tables

in our database. Choosing that option rather than just implementing tables directly saves us from

having to worry about dimension keys, sequences to populate them, and providing lookups of

dimension record keys to fill in for our cube. When loading a dimension, all we have to do is map

data to it and it handles constructing the levels and assigning keys automatically. When mapping to

the cube, all we have to do is specify business identifier attributes in our dimensions and map

values to them in the cube. The rest is all handled for us.

The underlying tables and sequences are all built automatically for us, so we need not be

concerned with building any tables or sequences.

TYBSC-IT (SEM 6) DATA WAREHOUSING

123

WE-IT TUTORILAS PHNO:8097071144/55

The Expression Builder provides us a powerful tool to use for interactively building expressions.

Support for Slowly Changing Dimensions is built in with the Enterprise ETL option. Although we

didn't make use of that feature in this introductory book, the support is there if we need it and

have paid for it when we build more advanced data warehouses and want to implement SCDs.

Unit .5

5.2.Validating,Generating,

TYBSC-IT (SEM 6) DATA WAREHOUSING

124

WE-IT TUTORILAS PHNO:8097071144/55

Deploying, and Executing Objects
The process of building the data warehouse from our model in the Warehouse Builder involves the

following four steps:

Validating: Checking objects and mappings for errors.

Generating: Creating the code that will be executed to create the objects and run the mappings.

Deploying: Creating the physical objects in the database from the logical objects we designed in

the Warehouse Builder.

Executing: Executing the logic that is found in the deployed mappings for mappings and

transformations.

The first three steps—validating, generating, and deploying—generally go together as all objects

and mappings are deployed. A deployment will automatically do a validation and generation first

before deploying. The fourth step—execution—is an independent process that is performed on

those objects that contain ETL logic and mappings after they've been deployed. It doesn't happen

for everything that we design in the Design Center. The Design Center has menu entries that will

allow us to validate, generate, and deploy objects, but not execute them. We will be introduced to

a new interface called the Control Center Manager, which is the tool for controlling the

deployment of objects and execution of mappings.

Validating

Error checking is what validation is for. The process of validation is all about making sure the

objects and mappings we've defined in the Warehouse Builder have no obvious errors in design.

Let's recap how we go about performing a validation on an object we've created in the Warehouse

Builder. There are a number of places we can perform a validation. One of them is the main Design

Center.

Validating in the Design Center

There is a context menu associated with everything we create. You can access it on any object in

the Design Center by right-clicking on the object of your choice. Let's take a look at this by

launching our Design Center, connecting as our ACMEOWB user, and then expanding our

ACME_DW_PROJECT. Let's find our staging table, POS_TRANS_STAGE, and use it to illustrate the

validation of an object from the Design Center. As we can recall, this table is under the

ACME_DWH module in Oracle node and right-clicking on it will present us with the following pop-

TYBSC-IT (SEM 6) DATA WAREHOUSING

125

WE-IT TUTORILAS PHNO:8097071144/55

up menu:

The Validate... entry has been highlighted. If we click on it, it will perform the validation of the

metadata entered for the object and will present us with the results in a separate dialog box as

shownnext:

The window on the right will contain the messages that have resulted from the validation. Our

POS_TRANS_STAGE table has validated successfully. But if we had any warnings or errors, they

TYBSC-IT (SEM 6) DATA WAREHOUSING

126

WE-IT TUTORILAS PHNO:8097071144/55

would appear in this window.

The validation will result in one of the following three possibilities:

1. The validation completes successfully with no warnings and/or errors as this one did.

2. The validation completes successfully, but with some non-fatal warnings.

3. The validation fails due to one or more errors having been found.

In any of these cases, we can look at the full message by double-clicking on the Message column in

the window on the right. This will launch a small dialog box that contains the full text of the

message.

In any of these cases, we can look at the full message by double-clicking on the Message column in

the window on the right. This will launch a small dialog box that contains the full text of the

message.

The drop-down menu in the upper left has options for viewing all objects, just warnings, or just

errors. The All Objects option, which is the default, displays all objects that have been validated,

whether or not there were warnings or errors. We have the option to validate more than one

object at a time by holding down the Ctrl key and clicking on several objects in the Design Center,

and then with the Ctrl key still held down, right-clicking on one of them and then selecting

Validate. All the selected objects will be validated and the results for all of them will appear in the

window on the right. If we select Warnings, only the objects that have warnings will be displayed,

and if we select Errors, only the objects with errors will be displayed.If we have warnings or errors

that we need to fix, we can double-click on the object name in the left window, or the name in the

Object column in the right window, to launch the appropriate editor on the object—the Data

Object Editor or the Mapping Editor. With one of these editors, we can make any modifications and

revalidate the object.

We can close the Validation Results dialog box now before moving on to discuss validating from

the editors. We can click on X in the dialog box window header, or click on the Close entry from the

File main menu, or use the Ctrl+F4 key combination.

Validating from the editors

The Data Object Editor and the Mapping Editor both provide for validation from within the editor.

We'll talk about the Data Object Editor first and then about the Mapping Editor because there are

some subtle differences.

TYBSC-IT (SEM 6) DATA WAREHOUSING

127

WE-IT TUTORILAS PHNO:8097071144/55

Validating in the Data Object Editor

Let's double-click on the POS_TRANS_STAGE table name in the Design Center to launch the Data

Object Editor so that we can discuss validation in the editor. We can right-click on the object

displayed on the Canvas and select Validate from the pop-up menu, or we can select Validate from

the Object menu on the main editor menu bar. Another option is available if we want to validate

every object currently loaded into our Data Object Editor. It is to select Validate All from the

Diagram menu entry on the main editor menu bar. We can also press the validate icon on the

General toolbar, which is circled in the following image of the toolbar icons:

When we validate an object in the editor, we do not get the Validation Results pop-up dialog box

as we did when validating from the Design Center. Here we get another window created in the

editor, the Generation window, which appears below the Canvas window. This is what we used in

the last chapter with our sneak peak at validation when we investigated the error we would get by

connecting a date attribute to a number attribute. The window that is produced will look similar to

the following:

We can place them where we want and make them the size we want. The window can be collapsed

so that all that is visible is the title bar that has the word Generation in it. The arrow to the left of

the title can be used to open or close the window. It points down when the window is open, as

seen in the above image. Clicking on it will cause the window to collapse and the arrow to rotate to

TYBSC-IT (SEM 6) DATA WAREHOUSING

128

WE-IT TUTORILAS PHNO:8097071144/55

point to the right, toward the window title. The two little down arrows on the right of the title bar

are for a menu of options to manipulate the window, including maximizing the window, making the

window full size to take up the entire area of the editor window, collapsing the window, or closing

the window entirely. All the windows can be manipulated in this fashion. So, if a window doesn't

appear where we want it to at first, we can move it around until it does.

When we validate from the Data Object Editor, it is on an object-by-object basis for objects

appearing in the editor canvas. But when we validate a mapping in the Mapping editor, the

mapping as a whole is validated all at once. Let's close the Data Object Editor and move on to

discuss validating in the Mapping Editor.

Validating in the Mapping Editor

We'll now load our STORE_MAP mapping into the Mapping Editor and take a look at the validation

options in that editor. Unlike the Data Object Editor, validation in the Mapping Editor involves all

the objects appearing on the canvas together because that is what composes the mapping. We can

only view one mapping at a time in the editor. The Data Object Editor lets us view a number of

separate objects at the same time.

For this reason, we won't find a menu entry that says "Validate All" in the Mapping Editor. What

we will find in the main editor menu bar's Mapping menu is an entry called Validate that we can

select to validate this mapping. To the right of the Validate menu entry we can see the F4 key

listed, which means we can validate our mapping by pressing the F4 key also. The key press we can

do to validate is not available in the Data Object Editor because it wouldn't know which object we

intend to validate. We also have a toolbar in the Mapping Editor that contains an icon for

validation, like the one we have in the Data Object Editor. It is the same icon as shown in the

previous image of the Data Object Editor toolbar.

Let's press the F4 key or select Validate from the Mapping menu or press the Validate icon in the

toolbar. The same behavior will occur as in the Data Object Editor—the validation results will

appear in the Generation Results window.

We get a different result when validating the STORE_MAP. It does not report success, but gives us a

warning. We will frequently encounter warnings from validation. They are non-fatal conditions that

will not keep the object from being deployed or executed, but are items we should watch out for

that might cause a problem.

TYBSC-IT (SEM 6) DATA WAREHOUSING

129

WE-IT TUTORILAS PHNO:8097071144/55

This message is telling us that it has compared the data type we supplied as input with the

COUNTIES_LOOKUP table to the data type of the key field we're going to match against and found

that they do not match.

In the Mapping Editor that has the STORE_MAP loaded, we'll click on the VALUE attribute in the

COUNTIES_LOOKUP operator and then look at the Attribute Properties window on the left for the

data type. We will see that it is defined as a NUMBER with zeros for precision and scale. When we

click on the ID attribute in the output group of the COUNTIES_LOOKUP operator, we see in the

Properties window that the data type of the ID attribute is the INTEGER type.A NUMBER data

type is a built-in data type in the Oracle Database.

The database uses these built-in data types internally to represent the information that can be

stored in the database. For all numbers, data type would be the NUMBER data type.

There are several other terms used to represent data types that are common in other databases,

programming languages, and tools. The Oracle database has provided us a feature that allows the

database to recognize a large number of these alternative data types and will automatically

convert them internally into one of its built-in types. These other supported data type

representations are described in that same chapter from the language reference with tables

provided to indicate the corresponding internal built-in data type. We can see that INTEGER is one

such data type and is internally represented by NUMBER(38) as the equivalent.

So, we have a value we have said is a NUMBER data type being compared against a value we've

said is an INTEGER data type. The Warehouse Builder validation process looks at the metadata

representation, sees two different data types, and reports the warning even though we know an

INTEGER is represented internally as a NUMBER.

That is validation in the mapping editor. We can go through our remaining objects and mappings

now and validate them. The order we validate objects in is not critical. Unless we've made a

TYBSC-IT (SEM 6) DATA WAREHOUSING

130

WE-IT TUTORILAS PHNO:8097071144/55

typographical error, missed a selection we should have made, missed a column we should have

added, or something like that, all the objects and mappings should validate successfully or have

warnings that can be safely ignored. There will probably be a warning when validating the

STAGE_MAP due to the SALES_QUANTITY from input being mapped to the SALE_QUANTITY in the

POS_TRANS_STAGE table. The input has a precision of 22 set, and the output in the staging table is

defined with a precision of zero. This can safely be ignored as a precision of zero will allow any size

number to be stored up to the database maximum size.

Generating

This step can happen in conjunction with the validation step as we've discussed previously, but the

Warehouse Builder does provide a separate menu entry to select for generating. We will discuss it

here to see what it's all about. Let's talk about generation; and no, we're not talking about baby

boomers, Gen X-ers, Gen Y-ers, or whatever they come up with for future generations. Here we're

talking about the other meaning of the word, which is the act or process of generating.

The objects—dimensions, cube, tables, and so on—will have SQL Data Definition Language (or

DDL) statements produced, which when executed will build the objects in the database. The

mappings will have the PL/SQL code produced that when it's run, will load the objects.

Generating in the Design Center

When we generate an object or mapping in the Design Center, we'll get the same pop-up window

appearing as we got when we validated, but in this case the window will be labeled Generation

Results and we'll have some extra information displayed. Let's go to the Design Center now and

generate the code for the POS_TRANS_STAGE table. We'll right-click on it and select Generate...

from the pop-up menu. It will present us with the following dialog box, which looks very similar to

the one we got when we validated it:

TYBSC-IT (SEM 6) DATA WAREHOUSING

131

WE-IT TUTORILAS PHNO:8097071144/55

On the left is the list of the objects that we've generated; in this case only one appears. On the

right is the window containing the results. If there were any messages too big to fit in the window,

we could double-click on them to launch a pop-up window to display the full message just as we

could with the validation results. These really are the validation results anyway. We get a validation

for free when we do a generation.

We can see something extra this time that we didn't see when we just validated. There is a tab

labeled Script that was not there before. This is where we can view the script that was generated,

and which will create this object for us in the database. For a database object, a DDL script is

generated for us. If we click on the Script tab, we can take a look at it.

Let's take a look at the Script tab. We see that it has generated a DDL script for us called

POS_TRANS_STAGE.ddl as shown next:

TYBSC-IT (SEM 6) DATA WAREHOUSING

132

WE-IT TUTORILAS PHNO:8097071144/55

We have two options in this dialog box:

We can view the script

We can save it to the disk

Let's click on the script name, or any one of the columns on that line, and we'll see that the View

Code and Save As... buttons have become active; they are no longer grayed out.

TYBSC-IT (SEM 6) DATA WAREHOUSING

133

WE-IT TUTORILAS PHNO:8097071144/55

We can see that it has generated an SQL CREATE TABLE statement for us. It contains the name of

our POS_TRANS_STAGE table along with column names and types as they are defined in the

Warehouse Builder. The dialog box provides us a menu bar with three entries—Code, Edit, and

Search—which we can use to do tasks such as:

Saving this code to a file

TYBSC-IT (SEM 6) DATA WAREHOUSING

134

WE-IT TUTORILAS PHNO:8097071144/55

Copying portions of the code and pasting them into another window

Searching through the code for text strings

However, we can see that the script is displayed in a read-only mode. In other words, we are not

allowed to make any changes to it. It is code that is automatically generated by the Warehouse

Builder, so there is no way for us to edit it directly.

To deploy our objects and mappings to create and populate our data warehouse, we really need

not be concerned with what the code looks like. This is because the Warehouse Builder takes care

of generating it all for us. However, we're checking this out for the first time to get an appreciation

of what it is doing for us behind the scenes. The data object code is not complicated in this case,

but let's take a look at the code for the mapping to populate this data object. We can close out the

code viewing dialog box and the Generation Results dialog box for the POS_TRANS_STAGE table.

We'll right-click on the STAGE_MAP mapping in the Design Center and select Generate from the

pop-up menu. There may be something different that is noticeable on the Script tab of the

Generation Results window, depending on whether we've generated and actually deployed this

mapping before:

This is the STAGE_MAP.pls package that appears in the window. We'll discuss the deployment

actions a little later in the chapter. If we view this code, we'll see that it is more complicated than

the DDL script that was generated for our previous table. Let's click on the STAGE_MAP.pls line

and then on the View Code button to view the code. The same pop-up window is used to view this

mapping code as we saw before when we viewed the DDL script for the table.

TYBSC-IT (SEM 6) DATA WAREHOUSING

135

WE-IT TUTORILAS PHNO:8097071144/55

For a mapping, the code that is generated is a PL/SQL Package. A package is a code construct that

contains variables and procedures to perform some work in the database. It is a way to group

variables and procedures together that all contribute to the performance of a particular task. In

this case, the task is the loading of the POS_TRANS_STAGE table. All the code necessary to

accomplish that task is contained in this package's script. We have the same Code, Edit, and Search

menu options and the script is also read-only, as it was for the table object we displayed

previously.

TYBSC-IT (SEM 6) DATA WAREHOUSING

136

WE-IT TUTORILAS PHNO:8097071144/55

This completes our look at the process we would follow to generate our objects and mappings

from the Design Center. If we were to encounter any errors that needed to be fixed, we could jump

to the appropriate editor by double-clicking on the object or mapping name in the left window of

the results dialog box.

As with validation, the generation function can be run from the editors as well and this is slightly

different from running it from the Design Center. So let's take a look at that now after closing out

the script window and the generation results dialog box.

Generating from the editors

When we generate an object or mapping from one of the editors, it will display the results in a

window within the editor just as it did for the validation; only this time the name of the window

will match the function we just performed. The same Generation window in which the validation

results appeared will be used for the actual generation results. But as with the generation from the

Design Center, we'll have the additional information available. The procedure for generating from

the editors is the same as for validation, but the contents of the results window will be slightly

different depending on whether we're in the Data Object Editor or the Mapping Editor.

Generating in the Data Object Editor

We'll start with the Data Object Editor and open our POS_TRANS_STAGE table in the editor by

double-clicking on it in the Design Center. To review the options we have for generating, there is

the Generate... menu entry under the Object main menu, the Generate entry on the pop-up menu

when we right-click on an object, and a Generate icon on the general toolbar right next to the

Validate icon as shown in the following image:

We'll use one of these methods to generate the POS_TRANS_STAGE table. The results will appear

in the following Generation window with the Script tab selected:

TYBSC-IT (SEM 6) DATA WAREHOUSING

137

WE-IT TUTORILAS PHNO:8097071144/55

The window also provides us a Validation Messages tab, which will display any messages

generated as a result of validation. We also have a menu of options that appears on the Script tab:

Code, Edit, and Search that provide us the same options as on the pop-up window when viewing

the script from the Design Center that we saw previously.

Generating in the Mapping Editor

Let's open the Mapping Editor on the STAGE_MAP mapping now. From the Design Center, we can

just double-click on the STAGE_MAP mapping to launch the Mapping Editor and load the

STAGE_MAP mapping. The process for generating the mapping is the same as for validation, but we

just select Generate instead of Validate from the Mapping menu or press the F5 key instead of F4.

There is also an icon on the toolbar to select the generation option. It is shown next:

Looking at the Generation window now, we can see that we have additional information displayed.

Instead of the validation messages appearing in the window, we now see the script that was

generated. We also have a couple of extra drop-down menus, which we didn't have when we were

just validating, and which we didn't have when we were generating in the Data Object Editor

TYBSC-IT (SEM 6) DATA WAREHOUSING

138

WE-IT TUTORILAS PHNO:8097071144/55

either.

We have two tabs available in the window, a Script tab that displays the script and a Message tab

that displays the validation messages. These perform the same functions as the Script and

Validation Message tabs in the Generation window of the Data Object Editor. However, the Script

tab doesn't have the extra Code, Edit, and Search menus that we had in the Data Object Editor. The

reason can be found in this comment we see in the script window as a note:

The code generated for a mapping is far more complex than the DDL code generated for data

objects as we saw when we looked at it from the Design Center. One of the main reasons the code

for mappings is so complex is because we have five options to choose from for the default

operating mode of the mapping when we execute it, and it has to be able to support all five. There

are three operating modes the mapping can run in, and two that indicate failover options for

switching between them. One of the drop-down menus at the top of the Script tab window is

labeled Operating mode, and allows us to view the code for each of the operating modes

separately. For this reason, some different functionality is available to us in the Script tab and it

displays code that is not quite the complete script we saw in the Design Center. If we scroll down

the Script tab, we'll see that it is not displaying as many lines as were displayed when viewing the

generation results from the Design Center.

Default operating mode of the mapping

The Warehouse Builder provides three possible modes that the mapping code can run in when

executing in the database. In addition, it also provides two options for failover execution should

one mode have errors. These modes are based on the performance we expect from the mapping,

the amount of auditing data we require, and how we designed the mapping.

TYBSC-IT (SEM 6) DATA WAREHOUSING

139

WE-IT TUTORILAS PHNO:8097071144/55

The three modes are as follows:

• Set-based

• Row-based

• Row-based (target only)

In set-based mode, the Warehouse Builder will generate a single SQL statement that performs all

the operations of our mapping in one statement. It processes the data as a single set of data. This is

good for performance, but the drawback is that runtime auditing information is limited. If any

errors are generated, it is not able to tell us which row generated the error. We can view the code

that is set-based by selecting SET_BASED in the Script tab from the Operating Mode drop-down

menu.

In row-based mode, the Warehouse Builder generates code to process the data row by row. It uses

a combination of SQL Cursors and PL/SQL code. It does not provide as big a performance benefit as

the set-based mode, but we gain much greater auditing capability of the execution results. There

are also additional parameters that can be set to improve the performance of this mode, which are

documented in the User's Guide and online help if we choose to use this mode. We can select

ROW_BASED from the drop-down menu to view the row-based code.The final of the three options

is row-based (target only) mode. This option creates a SQL select cursor and tries to include as

many operations as it can into that cursor to process the source data and operations on it as a set,

but then writes the rows to the target one row at a time. This will limit the auditing available for

input and operations, but provides greater auditing of the output to the target. We can select

ROW_BASED_TARGET_ONLY from the drop-down menu to view the code for the option.

The following two additional options for operating modes are available, which are based on the

previous three:

• Set-based fail over to row-based

• Set-based fail over to row-based (target only)

These options are used to run the mapping in set-based mode, but if an error occurs, try the

mapping in row-based mode—either regular or target only. We can view the code for either of

these options by selecting SET_BASED_FAIL_OVER_TO_ROW_ BASED or

SET_BASED_FAIL_OVER_TO_ROW_BASED_TARGET_ONLY from the drop-down menu.

The options are available via right-clicking a mapping in the Design Center and selecting

Configure.... This will display the following pop-up screen where we can see that the default

operating mode set for our mapping is Set based fail over to row based.

TYBSC-IT (SEM 6) DATA WAREHOUSING

140

WE-IT TUTORILAS PHNO:8097071144/55

Selecting the generation style

The generation style has two options we can choose from, Fullor Intermediate. The Full option will

display the code for all operators in the complete mapping for the operating mode selected. The

Intermediate option allows us to investigate code for subsets of the full mapping option. It displays

code at the attribute group level of an individual operator. If no attribute group is selected when we

select the intermediate option in the drop-down menu, we'll immediately get a message in the Script

tab saying the following:

Please select an attribute group.

When we click on an attribute group in any operator on the mapping, the Script window immediately

displays the code for setting the values of that attribute group. The following is an example of what we

would see by clicking on the INOUTGRP1 group of the REGIONS table operator:

TYBSC-IT (SEM 6) DATA WAREHOUSING

141

WE-IT TUTORILAS PHNO:8097071144/55

It is a standard SQL SELECT statement that has the four attributes of the REGIONS table selected.

The FROM clause indicates that the source of the data for these attributes is the REGIONS table in

the ACME_POS database at our location defined as ACME_POS_LOCATION.

We called it ACME_POS with a location defined as ACME_POS_LOCATION. The Warehouse Builder

implements this location as a database link in the Oracle Database and calls it

ACMEPOS@ACME_POS_ LOCATION. The ACMEPOS text string is from the service name we used to

refer to the location and ACME_POS_LOCATION is the name we gave to the location. To reference a

table in that database, the table name is prefixed to the database link name, which is separated by

another @ symbol.

When we selected the Intermediate generation style, the drop-down menu and buttons on the

righthand side of the window became active. We have a number of options for further

investigation of the code that is generated, but these are beyond the scope of what we'll be

covering in this book. One final point we'll make about these options is in reference to the drop-

down menu labeled Aspect. When an attribute group is selected, it may be used as input, output,

or both. This drop-down menu lets us see the code that is defined for either one of these options

for an attribute group that has more than one of these options. If we select Incoming, we get to

see what code selects the values that are used as input for the group. If we select Outgoing, we get

to see the code that will select the values for output. There is another option that can appear in

the menu, and that is Loading. If we click on the INOUTGRP1 attribute group of the

POS_TRANS_STAGE mapping table operator, we'll have that option in addition to Incoming and

Outgoing. This is the final target operator in the mapping, and so must actually load data into the

target table. The loading aspect will show us the SQL INSERT statement that loads the data into

the target table.

TYBSC-IT (SEM 6) DATA WAREHOUSING

142

WE-IT TUTORILAS PHNO:8097071144/55

Deploying

The process of deploying is where database objects are actually created and PL/ SQL code is

actually loaded and compiled in the target database. Up until this point, no objects exist in our

target schema, ACME_DWH, in our Oracle database.

Everything we've done until now has been done entirely in the OWB Design Center client. But to

perform the process of deployment, now we're going to have to communicate to the target

database. For that we need to be introduced to the Control Center Service, which must be running

for the deployments to function.

The Control Center Service

The Control Center Service is a process that runs on the server and provides the interface to our

target database for controlling the deployment process. It is also possible to run the Control Center

Service on another remote computer to implement a remote runtime. If it's running in this

configuration, it doesn't start automatically by default. So we would need to manually start it. It is

available from the Windows Start menu as shown next:

We will not need to run it because we're running locally on the same machine as the database is

running, and will be interfacing with the Control Center Service that is running locally in the

TYBSC-IT (SEM 6) DATA WAREHOUSING

143

WE-IT TUTORILAS PHNO:8097071144/55

database. If we were to implement a remote runtime and had to run this Start Control Center

Service menu entry, it would start up a command window with the window title Start Control

Center Service and would pop-up a dialog box asking us for connection information for the

OWBSYS schema in our database. We would enter the password, host name, and service name for

connecting to that schema.

The local Control Center Manager on the database server is controlled using scripts, which are run

in the database while connected as the OWBSYS user. The scripts are located in the

ORACLE_HOME\owb\rtp\sql\ folder. They can be run using the SQL*Plus command-line utility for

executing SQL commands and scripts. Open a command-prompt window and enter the following

command to run it and connect to the OWBSYS schema:

sqlplus OWBSYS

Enter the password for OWBSYS when prompted, and then enter the following command at the

SQL*Plus command prompt to display the status of the service:

@ORACLE_HOME\owb\rtp\sql\show_service.sql

Substitute your actual ORACLE_HOME location in the previous command.

A few of the other scripts available in the previous folder are as follows:

• start_service.sql: Starts the Control Center Service

• stop_service.sql: Stops the Control Center Service

• service_doctor.sql: Analyzes the state of the service and reports the status

The Control Center Service normally starts when the database starts up. So if we are running the

database server locally, we don't need to bother with running any of the scripts. However, it is

good to be informed should there be any problem in the future involving connections to the

service. Let's give the Control Center Service some work to do now by doing an actual deployment

from the Design Center.

Deploying in the Design Center and Data Object Editor

As with validation and generation, we can deploy objects and mappings from the Design Center or

from within the Data Object Editor. However, unlike validation and generation, there is no

deployment option available from the Mapping Editor. Let's deploy our POS_TRANS_STAGE table

from the Design Center. The process is similar if we're doing it from the Data Object Editor. We'll

TYBSC-IT (SEM 6) DATA WAREHOUSING

144

WE-IT TUTORILAS PHNO:8097071144/55

right-click on it and select Deploy from the pop-up menu.

If we get this pop-up window when we click on the OK button, we'll get another pop-up window

prompting for connection information for the Control Center Service where we can provide

connection information

The only items we can modify here are the User Name and Password to use. These items default

to the repository workspace owner that we've been using all along to connect in the Design Center,

and we should not change them. Mostly, this dialog box appears because the Control Center

Service is not running, and not because of incorrect connection information. Let's take a quick look

at where that connection information is specified. We'll press the Cancel button in the dialog box

to close it if it appears.

If we get this pop-up window when we click on the OK button, we'll get another pop-up window

TYBSC-IT (SEM 6) DATA WAREHOUSING

145

WE-IT TUTORILAS PHNO:8097071144/55

prompting for connection information for the Control Center Service where we can provide connection

information. That dialog box looks like the following:

The act of registering a location is to associate all the previous information with a location defined

in the Warehouse Builder so that the Control Center Service knows how to find the location. The

connection details in the previous dialog box are what it uses to connect to the location. Simply

provide the password for the target schema and ensure that the rest of the information is correct,

and then click on OK. The location will be registered and the object will deploy. We can register

and un-register locations at any time by using the Control Center Manager. We'll be looking at the

Control Center Manager very soon.

So, we have deployed our POS_TRANS_STAGE table in the Design Center. Assuming the Control

Center Service is running and we don't get any of the previous dialog boxes, we will actually not get

TYBSC-IT (SEM 6) DATA WAREHOUSING

146

WE-IT TUTORILAS PHNO:8097071144/55

any dialog box when we deploy an object, unless we have set a certain option to tell the

Warehouse Builder to display a dialog box upon completion of the deployment.

If we want to see a completion message, we have to set this option in the preferences for the

Design Center and tell it to show this message to us when the deployment is completed. We can

set this option under the Tools menu entry by selecting the Preferences... menu entry. The

resulting dialog box will look similar to the following, which has been scrolled down so that the

needed entry is visible and the column has been expanded so that the whole description is visible.

We need to check the box beside the option for displaying the completion status as follows:

If we get this pop-up window when we click on the OK button, we'll get another pop-up window

prompting for connection information for the Control Center Service where we can provide connection

information. That dialog box looks like the following:

TYBSC-IT (SEM 6) DATA WAREHOUSING

147

WE-IT TUTORILAS PHNO:8097071144/55

The act of registering a location is to associate all the previous information with a location defined in

the Warehouse Builder so that the Control Center Service knows how to find the location. The

connection details in the previous dialog box are what it uses to connect to the location. Simply provide

the password for the target schema and ensure that the rest of the information is correct, and then click

on OK. The location will be registered and the object will deploy. We can register and un-register

locations at any time by using the Control Center Manager. We'll be looking at the Control Center

Manager very soon.

So, we have deployed our POS_TRANS_STAGE table in the Design Center. Assuming the Control Center

Service is running and we don't get any of the previous dialog boxes, we will actually not get any dialog

box when we deploy an object, unless we have set a certain option to tell the Warehouse Builder to

display a dialog box upon completion of the deployment.

If we want to see a completion message, we have to set this option in the preferences for the Design

Center and tell it to show this message to us when the deployment is completed. We can set this option

under the Tools menu entry by selecting the Preferences... menu entry. The resulting dialog box will

look similar to the following, which has been scrolled down so that the needed entry is visible and the

column has been expanded so that the whole description is visible. We need to check the box beside

the option for displaying the completion status as follows:

TYBSC-IT (SEM 6) DATA WAREHOUSING

148

WE-IT TUTORILAS PHNO:8097071144/55

It will show us the completion message after this option has been checked, which will look similar to the

following:

This shows us that the deployment processed successfully with no errors or warnings. But what if the

count of errors or warnings was not zero? There would be nothing but a count that would display with

this dialog box, so we need a feature to see what these warnings and error messages are. There must

be some way to give us more control over the deployment process as the Design Center only shows us

design information. This feature of the Warehouse Builder is the Control Center Manager.

The Control Center Manager

The Control Center Manager is the interface the Warehouse Builder provides for interacting with the

target schema. This is where the deployment of objects and subsequent execution of generated code

takes place. The Design Center is for manipulating metadata only on the repository. Deployment and

execution take place in the target schema through the Control Center Service. The Control Center

Manager is our interface into the process where we can deploy objects and mappings, check on the

status of previous deployments, and execute the generated code in the target schema.

We launch the Control Center Manager from the Tools menu of the Design Center main menu. We click

on the very first menu entry, which says Control Center Manager. This will open up a new window to

run the Control Center Manager, which will look similar to the following:

TYBSC-IT (SEM 6) DATA WAREHOUSING

149

WE-IT TUTORILAS PHNO:8097071144/55

The Control Center Manager window overview

The Control Center Manager interface is organized in a similar manner to the Design Center with

multiple windows appearing in the main window. But only two windows are available: the Object

Details window and the Control Center Jobs window. The subwindow on the left that displays the tree

hierarchy for our project and the locations defined within it is a permanent part of the interface, and so

it does not have a separate window title like the other two.

Beginning with the left subwindow, we see our project name displayed there with a list of the locations

that have been defined within our project. The primary location of concern for deployment and

execution will be ACME_DWH_LOCATION. This is the location we have defined for our target database

and selected as default.

TYBSC-IT (SEM 6) DATA WAREHOUSING

150

WE-IT TUTORILAS PHNO:8097071144/55

Clicking on the plus sign beside any of the subcategories, such as Mappings or Tables, will show us the

list of the objects of that type defined within our project. If we click on an entry in the hierarchy, the

Object Details window will update to display the associated objects. In the previous image of the entire

Control Center Manager window, we can see that the Object Details window contains the entire set of

objects defined in our project for the main location because that is what is selected in the tree view on

the left. Now as we click on the subcategories, the Object Details window updates to display just the

objects within that subcategory. If we further expand the tree view on the left to view the objects in a

subcategory, we can click on an individual item and the Object Details window will display the details

for just that item.

The Object Details window

Let's click on the ACME_DWH_LOCATION again in the left window and look at the complete list of

objects for our project. The statuses will vary depending on whether we've done any deployments or

not, when we did them, and whether there are any warnings or failures due to errors that occurred. If

you're following along exactly with the book, the only deployment we've done so far is the

POS_TRANS_STAGE table and the previous image of the complete Control Center manager interface

shows it as the only one that has been deployed successfully. The remainder all have a deploy status of

Not Deployed.

The columns displayed in the Object Details window are as follows:

Object: The name of the object

Design Status: The status of the design of the object in relation to whether it has been deployed yet or

TYBSC-IT (SEM 6) DATA WAREHOUSING

151

WE-IT TUTORILAS PHNO:8097071144/55

not

New: The object has been created in the Design Center, but has not been deployed yet

Unchanged: The Object has been created in the Design Center and deployed previously, and has not

been changed since its last deployment

Changed: The Object has been created and deployed, and has subsequently undergone changes in the

Design Center since its last deployment

Deploy Action: What action will be taken upon the next deployment of this object in the Control Center

Manager

Create: Create the object; if an object with the same name already exists, this can generate an error

upon deployment

Upgrade: Upgrade the object in place, preserving data

Drop: Delete the object

Replace: Delete and recreate the object; this option does not preserve data

Deployed: Date and time of the last deployment

Deploy Status: Results of the last deployment

Not Deployed: The object has not been deployed yet

Success: The last deployment was successful, without any errors or warnings

Warning: The last deployment had warnings

Failed: The last deployment failed due to errors

Location: The location defined for the object, which is where it will be deployed

Module: The module where the object is defined

The following is a list of the columns that have actions available, and how to access them:

Object: Double-click on the object name to launch the appropriate editor on the object.

Deploy Action: Click on the deploy action to change the deploy action for the next deployment of the

object via a drop-down menu. The list of available actions that can be taken will be displayed. Not all

the previously listed actions are available for every object. For instance, upgrade is not available for

some objects and will not be an option for a mapping.

There are two buttons available in the Object Details window, Default Actions and Reset Actions. Every

object created in the Design Center has a default deployment action associated with it, which is

TYBSC-IT (SEM 6) DATA WAREHOUSING

152

WE-IT TUTORILAS PHNO:8097071144/55

determined by the current design and deployment status. For example, a mapping that has not been

deployed yet has a default status of Create. A table that was previously deployed but just changed will

have a default action of Upgrade. The Default Actions button will change the displayed Deploy Action

to show the default action for that object based on a comparison of its design status with its deploy

status.

Now let's click on the Default Actions button and we'll notice that all the actions are updated to their

default action. In our case, with just the POS_TRANS_STAGE table deployed and all others not

deployed, all the objects except for POS_TRANS_STAGE have the Deploy Action changed to Create

from None.

This is a rather confusing message. What is the tree change filter it is referring to? In the tree window

on the left of the Control Center Manager, there is a drop-down menu at the top of the window that is

labeled View, which is the filter to which it's referring. It defaults to All Objects for displaying every

object without filtering out any. If we click the drop-down menu and select Changed Objects, the

objects displayed will update to display only those objects that have been changed or are new.

The Control Center Jobs window

Every time we do a deployment or execute a mapping, a job is created by the Control Center to perform

the action. The job is run in the background while we can continue working on other things, and the

status of the job is displayed in the Control Center Jobs window. Looking back at the previous image of

the Control Center Manager, we can see the status of the POS_TRANS_STAGE table deployment that

we performed. The green check mark indicates it was successful. If we want to see more details,

especially if there were warnings or errors, we can double-click on the line in the Control Center Jobs

window and it will pop up a dialog box displaying the details. An example of the dialog box is shown

next:

TYBSC-IT (SEM 6) DATA WAREHOUSING

153

WE-IT TUTORILAS PHNO:8097071144/55

The difference is the addition of an extra window at the bottom, which contains the messages that

provide the details about the process. It is a scrollable window, and the previous image only shows the

last part of the messages. The complete contents of the window are displayed next:

TYBSC-IT (SEM 6) DATA WAREHOUSING

154

WE-IT TUTORILAS PHNO:8097071144/55

We can see from the previous image that the validation messages are also included because when the

Warehouse Builder deploys an object, it automatically does actual validation and generation first. It is

not necessary to perform a manual validation and then a generation before doing a deployment if we

need to redeploy an object, as it will do that for us automatically.

If there were any errors in deployment, these errors would appear in the previous window also. For

deployments, as we're dealing with actual scripts executing in the target database to create objects or

mapping code, the deployment errors will be of the form of errors generated by the database.

The following example will illustrate an error encountered when deploying a dimension, which in this

case is the STORE dimension:

TYBSC-IT (SEM 6) DATA WAREHOUSING

155

WE-IT TUTORILAS PHNO:8097071144/55

This dialog box indicates an error occurred while trying to deploy the STORE dimension. There are two

results lines because this is a redeployment of an object that had already been deployed before, and

Replace was the default deployment action it performed. This involves a DROP of the existing object,

which was successful, and a CREATE of the new version of the object, which failed with an ORA-00904

error. To see the full error, we can view the contents of the scrolled window at the bottom that displays

the full error message:

TYBSC-IT (SEM 6) DATA WAREHOUSING

156

WE-IT TUTORILAS PHNO:8097071144/55

This screenshot is telling us that the COUNTY identifier used in the dimension is invalid. This particular

error was caused by adding the COUNTY attribute to the dimension and underlying table, and deploying

the dimension with the new COUNTY attribute before deploying the underlying table. The dimension

definition in the database refers to columns in the underlying table. The metadata in the Design Center

was correct—the table definition included the COUNTY column—which is why the validation was

successful, but the STORE table that had been created in the database did not have a COUNTY column.

This dialog box indicates an error occurred while trying to deploy the STORE dimension. There are two

results lines because this is a redeployment of an object that had already been deployed before, and

Replace was the default deployment action it performed. This involves a DROP of the existing object,

which was successful, and a CREATE of the new version of the object, which failed with an ORA-00904

error. To see the full error, we can view the contents of the scrolled window at the bottom that displays

the full error message:

TYBSC-IT (SEM 6) DATA WAREHOUSING

157

WE-IT TUTORILAS PHNO:8097071144/55

This screenshot is telling us that the COUNTY identifier used in the dimension is invalid. This particular

error was caused by adding the COUNTY attribute to the dimension and underlying table, and deploying

the dimension with the new COUNTY attribute before deploying the underlying table. The dimension

definition in the database refers to columns in the underlying table. The metadata in the Design Center

was correct—the table definition included the COUNTY column—which is why the validation was

successful, but the STORE table that had been created in the database did not have a COUNTY column.

Deploying in the Control Center Manager

The previous overview of the Control Center Manager windows showed us how it displays the results of

our deployments, in particular the ones we initiated from the Design Center, but we can also deploy

objects from within the Control Center Manager. This is one of its major functions, along with executing

code and checking on the status of jobs.

All of the functions we can perform from the Control Center Manager are initiated from the tree view

on the left. There are pop-up menus available on each object and also main menu entries that will

perform the action on the currently selected object. Let's deploy the STAGE_MAP stage mapping from

the Control Center Manager by finding it in the tree view. We have to expand the ACME_DW_PROJECT

project and the location for our ACME_DW_LOCATION target, and then the module for the ACME_DWH

target database. As we want to deploy a mapping, we need to look under the Mappings node. So we

TYBSC-IT (SEM 6) DATA WAREHOUSING

158

WE-IT TUTORILAS PHNO:8097071144/55

expand that entry in the tree view, right-click on it, and select Deploy from the pop-up menu. We can

also click on it and then select File | Deploy | To Control Center from the main menu.

A new entry will be created in the Control Center Jobs window and the status will update as the job

progresses. It's possible we might be presented with another dialog box saying a location hasn't been

registered yet and it will prompt for the connection information similar to the previous dialog box. The

STAGE_MAP references the ACME_POS source SQL Server database using the ACME_POS_LOCATION

location, which also needs to be registered. As before, we can just fill in the password for the

ACME_DW_USER login, double-check the remaining information, and click the OK button.

Executing

Now we have our staging table deployed to the target database, the POS_TRANS_ STAGE table, and

have successfully deployed the mapping to load that table from our STAGE_MAP source database. This

means we now have enough of our target database deployed to be able to execute the STAGE_MAP

mapping to load the staging table. Let's do that now so that we will have progressed through the entire

process once. Loading the staging table is the first step we have to take to load our database before we

can proceed to load the actual target dimensions and cube. After we execute this mapping, we can go

back and deploy the remaining objects, and execute them to load the dimensions and cube.

The process of executing a mapping cannot be performed from the Design Center. To execute

mappings, we need to be in the Control Center Manager. However, once in the Control Center

Manager, the process of executing is very similar to deploying. Results are displayed in the Control

Center Jobs window, which is the same as that of the deployment results, but on a different tab, that is

the Execution tab.

To execute a mapping we might think to look for a menu entry that says Execute, but we will not find it.

We need to select the menu entry that says Start to start the code running. This menu entry is available

from the pop-up menu by right-clicking on an item in the tree view, and from the File menu when an

item is selected in the tree view.

Having determined that we have successfully deployed the most recent version, we continue and select

Start. So the Control Center Manager begins executing the mapping code. As it executes, the first thing

we'll notice is that the Control Center Jobs window will update to display the Execution tab with our

TYBSC-IT (SEM 6) DATA WAREHOUSING

159

WE-IT TUTORILAS PHNO:8097071144/55

newly submitted job as the first entry.

The important thing to notice about this dialog box is the success or failure message. The counts (at

least for the processed count) are not accurate. This is a minor bug, as it did indeed process this

mapping. This is verifiable by double-clicking on the status for our job in the Control Center Jobs

window to display the details about this execution.

TYBSC-IT (SEM 6) DATA WAREHOUSING

160

WE-IT TUTORILAS PHNO:8097071144/55

This is a rather familiar-looking dialog box. We've seen similar ones before with the details of our

validations, generations, and deployments. The internal organization of the windows is the same, but

the information displayed is customized to the task we're performing. In this case, with the execution of

a mapping, the upper left window displays two tabs, one for Input Parameters and the other for

Execution Results.

The input parameters are configuration options for running the mapping that involve the operating

mode among others. We discussed the operating mode previously when talking about generating code

and viewing the code for the various operating modes.

The runtime parameters are inside the red box in the previous screenshot. We have covered the default

operating mode previously, but the others are all more advanced than we'll have time or the need to

cover here. There are good explanations of all the runtime parameters in the online help accessible by

pressing the Help button. Select the Configuring Mappings Reference link and then the Runtime

Parameters link from the resulting help dialog box to access detailed explanations of all the runtime

TYBSC-IT (SEM 6) DATA WAREHOUSING

161

WE-IT TUTORILAS PHNO:8097071144/55

parameters. For our purpose, the defaults will all be fine.

The next tab in the Job Details dialog box for our execution job is the Execution Results tab. Clicking on

that will show us results similar to the following, which could display more or less for the inserted count

depending on how much sample data we actually have in the source database. As of this execution,

there were 10026 records in the source POS_TRANSACTIONS table:

Deploying and executing remaining objects

This completes the process of loading our staging table. It's now ready to be used for loading our

dimensions and our cube. We've now gone through every process we needed for creating our data

warehouse. All that remains is for us to complete the deployment and execution of the remaining

objects. The process is the same for all the objects.

At this point, the only issue we need to be concerned with is the order in which we deploy and execute

the objects. We don't want to deploy and execute a mapping to load a dimension, for example, until

we've deployed the dimension itself; otherwise we'll get errors. We can't deploy the dimension

successfully until the underlying table has been deployed. We got a small taste of a possible error that

can occur due to incorrectly timing our table and dimension deployments earlier in the chapter when

we saw the error that could occur when deploying a dimension that had been changed before the

modified underlying table was deployed. The dimension specification that was being deployed in that

example did not match the actual table in existence in the database, and so an error occurred.

Deployment Order

With that in mind, let's talk about the order in which we should proceed to deploy and execute our

objects. The group of objects we have to deploy consists of the following:

• Dimensions

• A cube

TYBSC-IT (SEM 6) DATA WAREHOUSING

162

WE-IT TUTORILAS PHNO:8097071144/55

• Tables

• Mappings

• Sequences

We want to start with objects that do not rely upon any other objects, and then proceed from there.

The only class of objects from the preceding list that doesn't rely upon any others would be sequences,

so we'll do them first. Tables are likely the next candidate for deployment, but there could be foreign

key dependencies between tables that will cause errors if the tables are deployed in the wrong order;

so we need to watch out for that. In fact, the underlying table created for our SALES cube has foreign

key dependencies upon the three dimension tables and so those must be done before the SALES table.

The cube will rely upon the dimensions as well as its underlying table, and the dimensions need to have

the underlying tables deployed first. So, it looks like the dimensions would be good to do next and then

the cube. Finally, the mappings can be done since they depend on the cube, dimensions, and tables.

Now that we have figured this out, here's the final list in order of the objects remaining to deploy:

 Sequences

DATE_DIM_SEQ

PRODUCT_SEQ

STORE_SEQ

 Tables

COUNTIES_LOOKUP

DATE_DIM

PRODUCT

STORE

SALES

 Dimensions

DATE_DIM

PRODUCT

STORE

 Cube

SALES

 External tables

TYBSC-IT (SEM 6) DATA WAREHOUSING

163

WE-IT TUTORILAS PHNO:8097071144/55

COUNTIES

 Mappings

COUNTIES_LOOKUP_MAP

DATE_DIM_MAP

PRODUCT_MAP

STORE_MAP

SALES_MAP

We'll go through each of the objects in the order given in the Control Center Manager or the

Design Center, and deploy them.

When complete, we can check the status of everything in the Control Center Manager by clicking

on the ACME_DWH database module to display all the objects. We can quickly scan down the list

to verify that everything got deployed successfully. When that is complete, we'll move on to the

next section where we'll execute them.

Execution order

Now that we have all the remaining objects deployed, it's time to execute them to complete our

data warehouse project. The execution only pertains to the code that is generated for the

mappings. The execution of the code behind all the other objects was done previously when we

deployed them to create the objects. For the mappings, the dependency will be determined by the

foreign keys that exist in the tables that the mappings are loading. We can't run a mapping without

errors to load a table that has foreign key dependencies on other tables before those other tables

have been loaded. We know that our SALES table has foreign keys to the dimension tables, so we

need to run them to load them before doing the SALES table. But we also know our STORE

mapping needs to do a look up of county information from our COUNTIES_LOOKUP table, and so

that mapping will need to be run before the STORE mapping. These are the known dependencies,

and armed with this knowledge, we specify our order as follows for executing mappings:

1. COUNTIES_LOOKUP_MAP

2. DATE_DIM_MAP

3. PRODUCT_MAP

4. STORE_MAP

TYBSC-IT (SEM 6) DATA WAREHOUSING

164

WE-IT TUTORILAS PHNO:8097071144/55

5. SALES_MAP

We'll execute these one by one as the individual order is important. After executing these mappings in

the given order, our data warehouse is now complete and ready to be queried.

TYBSC-IT (SEM 6) DATA WAREHOUSING

165

WE-IT TUTORILAS PHNO:8097071144/55

Unit 6

6.1 Extra Features
Metadata change management is an important practice we'll want to employ as we make more and

more edits and changes to our data warehouse over time, and the Warehouse Builder includes a

number of features that can help us with this. The Recycle Bin for saving deleted objects, copying and

pasting objects to make copies for backup or as the basis for new objects, taking snapshots of objects to

save the state at a point in time, and the metadata loader facility for making export files that can be

saved to a file in a configuration management tool for backup or to transfer metadata.

Metadata change management:

Metadata change management includes keeping a track of different versions of an object or mapping as

we make changes to it, and comparing objects to see what has changed. It is always a good idea to save

a working copy of objects and mappings when they are complete and function correctly. That way, if we

need to make modifications later and something goes wrong, or we just want to reproduce a system

from an earlier point in time, we have a ready-made copy available for use. We won't have to try to

manually back out of any changes we might have made. We would also be able to make comparisons

between that saved version of the object and the current version to see what has been changed.

The Warehouse Builder has a feature called the Recycle Bin for storing deleted objects and mappings for

a later retrieval. It allows us to make copies of objects by including a clipboard for copying and pasting to

and from, which is similar to an operating system clipboard. It also has a feature called Snapshots, which

allows us to make a copy (or snapshot) of our objects at any point during the cycle of developing our

data warehouse that can later be used for comparisons.

Recycle Bin:

 The Recycle Bin in OWB is the same concept as that which operating systems use to store

deleted files. To try out the Recycle Bin, we need to have an object we can delete. So let's create

a temporary mapping object named TEMP_MAP_FOR_DELETE.

 The Design Center if it's not already running, and in our ACME_DWH module in

ACME_DW_PROJECT we'll just right-click on the Mappings node and select New.

 Close the resulting Mapping Editor that launches for this new mapping because we're just going

to delete it next anyway, so it doesn't need to have anything created in it.

TYBSC-IT (SEM 6) DATA WAREHOUSING

166

WE-IT TUTORILAS PHNO:8097071144/55

 In the Design Center, we can right-click on an object and select Delete from the pop-up menu,

or we can click on an object and press the Delete key, or we can click on an object and select

Delete from the Edit main menu.

 The option to delete the object and move it to the recycle bin where it would still be accessible

later if needed, or just delete the object entirely so that it is never to be seen nor heard from

again.

 Click on OK.

 We could also click on the Cancel button and the dialog box would go away; nothing would

happen further. So, leaving the Put in Recycle Bin box checked, we'll click on the OK button.

Now we'll get a quick pop-up window titled Snapshot Action that actually mentions taking a

snapshot. This is the method it uses to implement the Recycle Bin. That is why we're including

both these discussions together here under metadata change management.

 The Recycle Bin is accessible from the main menu of the Design Center under the Tools menu

entry as shown next:

 the Recycle Bin window will pop up as shown in the following screenshot:

TYBSC-IT (SEM 6) DATA WAREHOUSING

167

WE-IT TUTORILAS PHNO:8097071144/55

 We can select the object with the left mouse button and click on the Restore button to cause

that object to be placed back into our project in the same place it was deleted from, as shown

by the Object Parent column. Of course, the Time Deleted is when we deleted the object. It is

possible to have more than one entry in the Recycle Bin with the same name.

 The Recycle Bin allows us to keep versions of deleted objects. Close the Recycle Bin by clicking

on the OK button.

Cut, copy, and paste:

 The cut, copy, and paste features to make a copy of an object in the current project, or to copy

an object to another project we might have defined in the Design Center.

 The only difference between cutting and copying is whether the original object is left in place or

not. When cutting, the original object is removed and placed on the clipboard; and if copying, a

copy of the object is placed on the clipboard leaving the original intact.

 the option to copy an object between projects by creating a new project just for copying this

object there. It's quick and we can remove that project when we are done. To create a new

project, we'll click on our ACME_DW_PROJECT in the Design Center and then select Design | New

from the main menu, or click the Ctrl+N key combination, or right-click on the project name and

select New.

 click on the Save button to save our project and it will immediately present us the dialog box to

enter a name for the new project. We'll name our project ACME_PROJ_FOR_COPYING and click

on the OK button to create the new empty project.

 leave the other options set to their default and click on the Next button.

 click on the Next button and then on Finish to create the empty database module.

 We cannot have more than one project open in the Design Center at the same time, so this is

just warning us that it will have to close any open windows we might have for this project, such

TYBSC-IT (SEM 6) DATA WAREHOUSING

168

WE-IT TUTORILAS PHNO:8097071144/55

as an Editor window to edit a mapping or other object, and that we will have to decide whether

to save our changes or not.

 We have the choice to:
1. Save our work that we have done so far

2. Revert back to the previously saved version of our project

3. Cancel the switching of projects and go back to the project

Click on the Save button. That will save the project we just created, close it, and open our original

project.

Copy the POS_TRANS_STAGE table from this project over to our new project that we just created. We'll

find it in the Tables node in our ACME_DWH database module under Databases | Oracle. We'll right-click

on it and select Copy from the pop-up menu, or use one of the other options for copying to copy this

table object to the clipboard. We don't want to use the cut option because we don't want to remove the

object from our original project.

The POS_TRANS_STAGE table on the clipboard, we can paste it into the other project we just created.

 The Paste menu option will only appear on the menu for the Tables node. So let's navigate there

in the project tree by right-clicking on Tables and selecting Paste. We can also click on the

Tables node and type the Ctrl+V key combination, or select the Paste menu entry on the Edit

main menu of the Design Center.

 The Paste menu option will only appear on the menu for the Tables node. So let's navigate there

in the project tree by right-clicking on Tables and selecting Paste. We can also click on the

Tables node and type the Ctrl+V key combination, or select the Paste menu entry on the Edit

main menu of the Design Center.

Snapshots:

A snapshot captures all the metadata information about an object at the time the snapshot is taken and

stores it for later retrieval. It is a way to save a version of an object should we need to go back to a previous

version or compare a current version with a previous one. We take a snapshot of an object from the Design

Center by right-clicking on the object and selecting the Snapshot menu entry.

That same menu entry is available on the main menu of the Design Center under the Design entry. We can

create a new snapshot, add this object to an existing snapshot, or compare this object with an already saved

snapshot.

TYBSC-IT (SEM 6) DATA WAREHOUSING

169

WE-IT TUTORILAS PHNO:8097071144/55

Take a snapshot of our POS_TRANS_STAGE table in the new project we created in the last section. We'll

right-click on the table name and select Snapshot | New... to create a new snapshot of it.

 Click on the Next button to move to step 1 of the wizard where we'll give our snapshot a name.

There are two types of snapshots we can take: a full snapshot that captures all metadata and

can be restored completely (suitable for making backups of objects) and a signature snapshot

that only captures the signature or characteristics of an object just enough to be able to detect

changes in an object. We can click on the Help button on this screen to get a detailed

description of the two options. Full snapshots can be converted to signature snapshots later if

needed, and can also be exported like regular workspace objects. Having selected Full, we click

on the Next button to move to the next step.

 This step displays a list of the objects we're capturing in this snapshot. We have the option on

this screen to select Cascade, which applies to folder-type objects.

 We can then select Cascade to have it include every object contained within that folder object.

This is an easy way to capture a large number of objects at once. In our case, we're only

capturing the POS_TRANS_STAGE table, so Cascade would have no effect. We'll click on Next.

 In the final step we are asked to select a depth to which we'd like to traverse to capture any

dependent objects for this object.

 Click on Next and get the summary display showing us what options we choose.

 If we want to see what snapshots we've created, there is an interface we can use, which is

available on the Tools menu of the Design Center. It is called Change Manager and will launch

the Metadata Change Management interface where we can manage our snapshots.

 If there were more than one snapshot, each would appear in the list on the left. If we click on an

entry on the left, the right Components window updates to display the objects that are

contained within the snapshot.

1. Restore: We can restore a snapshot from here, which will copy the snapshot objects

back to their place in the project, overwriting any changes that might have been made.

It is a way to get back to a previously known good version of an object if.

2. Delete: If we do not need a snapshot anymore, we can delete it. However, be careful as

there is no recycle bin for deleted snapshots. Once it's deleted, it's gone forever. It will

ask us if we are sure before actually deleting it.

3. Convert to Signature: This option will convert a full snapshot to a signature snapshot.

4. Export: We can export full snapshots like we can export regular workspace objects. This

will save the metadata in a file on disk for backup or for importing later.

TYBSC-IT (SEM 6) DATA WAREHOUSING

170

WE-IT TUTORILAS PHNO:8097071144/55

5. Compare: This option will let us compare two snapshots to each other to see what the

differences are.

 Click on the Columns tab and scroll down to the end to change the size of the STORE_COUNTRY

column to 100 from 50, and then close the editor.

 Click on the OK button and it will do the comparison, giving us a progress dialog box similar to

the previous one we saw when we were creating a snapshot.

 Close the Snapshot Comparison dialog box by clicking on the Close button, and also close the

Metadata Change Management window if it's still open.

Metadata Loader (MDL) exports and imports:

One final change management related tool for managing our metadata that we'll look at in the

Warehouse Builder is the ability to export workspace objects and save them to a file using the Metadata

Loader (MDL) facility.

When exporting we can choose any project, node, module, or object in Design Center in either the

Project Explorer, Connection Explorer, or Global Explorer windows.

Select the project by clicking on it and then select Design | Export | Warehouse Builder Metadata from

the main menu. If we have made any changes, we'll get a dialog box asking us to save the changes or

revert the changes as we have seen previously. We'll click on Save in that case.

We can use the Annotations box to enter any information that we would like to save about the export.

It is most often used to save a description of the contents of the export file for quick reference later.

Below that we specify the file name of the export file and name for the log file it will create of the

export. The dialog box will specify a default file name and location for each, but we are free to change

that to any location that suits us.

Accept the default file names and locations, and click on the Export button.

The Show Details button will expand the dialog box to display the details of the export in a scrolling

window, which shows step by step what it was doing.

TYBSC-IT (SEM 6) DATA WAREHOUSING

171

WE-IT TUTORILAS PHNO:8097071144/55

Synchronizing objects

We created tables, dimensions, and a cube; and new tables were automatically created for each

dimension and cube. We then created mappings to map data from tables to tables, dimensions, and a

cube.

One set of changes that we'll frequently find ourselves making is changes to the data we've defined for

our data warehouse. We may get some new requirements that lead us to capture a new data element

that we have not captured yet. We'll need to update our staging table to store it and our staging

mapping to load it. Our dimension mapping(s) will need to be updated to store the new data element

along with the underlying table. We could make manual edits to all the affected objects in our project,

but the Warehouse Builder provides us some features to make that easier.

Changes to tables
Let's start the discussion by looking at table updates. If we have a new data element that needs to be

captured, it will mean finding out where that data resides in our source system and updating the

associated table definition in our module for that source system.

Updating object definitions
There are a couple of ways to update table definitions. Our choice will depend on how the table was

defined in the Warehouse Builder in the first place. The two options are:

1. It could be a table in a source database system, in which case the table was physically created in

the source database and we just imported the table definition into the Warehouse Builder.

2. It could be a table we defined in our project in the Warehouse Builder and then deployed to the

target database to create it. Our staging table would be an example of this second option.

The POS_TRANS_STAGE table in the ACME_PROJ_FOR_COPYING project in the Design Center by double-

clicking on it to launch it in the Data Object Editor. We'll just add a column called STORE_AREA_SIZE to

the table for storing the size of the store in square feet or square meters. We'll click on the Columns tab,

scroll it all the way to the end, enter the name of the column, then select NUMBER for the data type.

The copy and paste technique we used earlier to copy the STAGE_MAP mapping over to this new

project. We'll open the ACME_DW_PROJECT project, answering Save to the prompt to save or revert.

Then on the STAGE_MAP mapping entry, we'll select Copy from the pop-up menu.

 We'll open the ACME_PROJ_FOR_COPYING project and then on the Mappings node, select Paste on

the pop-up menu.

TYBSC-IT (SEM 6) DATA WAREHOUSING

172

WE-IT TUTORILAS PHNO:8097071144/55

Synchronizing:

Inbound or outbound

Now that we have the correct repository object specified to synchronize with, we have to select

whether this is an inbound or outbound synchronization. Inbound is the one we want and is the default.

It says to use the specified repository object to update the operator in our mapping for matching. If we

were to select outbound, it would update the workspace object with the changes we've made to the

operator in the mapping.

Matching and synchronizing strategy

Having decided on inbound, we now have to decide upon a matching strategy to use. The online help

goes into good detail about what each of those strategies is, but in our case, we'll want to select Match

By Object Position or Match By Object Name. The Match by Object ID option uses the underlying

unique ID that is created for each attribute to do the matching with, and that unique ID is not

guaranteed to match between projects. It is a uniquely created ID internal to the Warehouse Builder

metadata, which uniquely identifies each attribute. The unique ID it stores in the operator for each

attribute is the unique ID from the original table it was synchronized with.

If we select the Replace synchronize strategy, its side effect in the mapping is that all the connections

we've made to the existing attributes in the table from the aggregator will be deleted. This is because it

has removed all the existing attributes and replaced them with new attributes from the new table with

all the new IDs. If we had selected the Merge synchronize strategy, it would leave all the existing

attributes alone.

There is a solution that will work fine and that is either of the other two Matching Strategy selections.

By selecting Match by Object Position, we'd be telling it to match the operator with the repository

object position-by-position, regardless of the unique IDs. So it will not wipe out any connections we've

already made as long as there is an attribute in the same corresponding position in the workspace table

object. The same holds true for Match By Object Name, but this option matches objects by the name of

the object and not the position or ID.

the Synchronize Strategy of merge or replace does not make any difference because all the attributes of

the operator in the mapping will be matched in either case. They only indicate what to do with

differences. And because the only difference is a new column in the table, regardless of whether we

merge in the difference or replace the difference, the net effect is the addition of the new column in the

operator.

TYBSC-IT (SEM 6) DATA WAREHOUSING

173

WE-IT TUTORILAS PHNO:8097071144/55

Viewing the synchronization plan

Based on our selection of the matching and synchronization strategy, the dialog box gives us the option

to view what it is going to do before we do it just to be sure we have made the proper selections. We

can click on the View Synchronization Plan button to launch a dialog box, which will show us what it is

going to do. It is nice because we can view the plan without having it actually do anything. So let's select

Match By Object ID for the matching strategy and Replace for synchronization strategy, and click on the

View Synchronization Plan button.

The Merge synchronize strategy option with the object ID match by changing that drop-down in the

dialog box to Merge and clicking on the Refresh Plan button.

Select either Match By Object Position or Match By Object Name and refresh the plan, we'll see that it

lists one action of Create for the new column. There may be updates for existing columns that match,

but there should be no other creates or deletes showing. This is what we want, so we'll click on the OK

button to close the Synchronization Plan dialog box. Back in the main Synchronization dialog box, we'll

select Match By Object Name as the matching strategy and Replace as the synchronization strategy

Changes to dimensional objects and auto-binding:

With Auto Bind, we can have the Warehouse Builder automatically create the table for us with all the

dimension attributes properly bound.

click on the Dimensional tab. Now right-click on the STORE dimension and select Auto Bind from the

pop-up menu. This will create a new STORE table for us, automatically bind the existing dimension

attributes and levels to columns in the table, and switch us back to the STORE tab showing us the

details.

Now if we click on the STORE table, it will show COPY_MODULE as the module and not ACME_DWH. We

can now proceed with our previous example about adding a column. In this case, we'll want to add a

column to the STORE dimension to save the size value, So let's go back to the Dimensional tab to do

that.

On the Attributes tab, scroll down to the end and enter a new attribute called AREA_SIZE.

save our work and go back to the STORE tab to check the STORE table, and we'll see that there is no

AREA_SIZE column

On the Dimensional tab, we need to perform the Auto Bind again on the dimension, and that will

update the table to include the new column

TYBSC-IT (SEM 6) DATA WAREHOUSING

174

WE-IT TUTORILAS PHNO:8097071144/55

6.2 Data Warehousing and OLAP

Defining OLAP:

The term OLAP was first coined by Dr E F Codd, the inventor of the relational model, to describe a genre

of software that is used for analyzing business data in a top down hierarchical fashion. It is significant to

note that in his white paper, where he coined the term OLAP, Dr. Codd cautioned that “relational

databases were never intended to provide the very powerful functions for data synthesis, analysis and

consolidation that are being defined as multidimensional analysis” . OLAP tools present data in a

multidimensional fashion that non-technical users find intuitive. They are able to navigate through their

business data in a simple way, gaining insights which they simply have not been able to gain using

previous generation approaches ranging from printed reports to report writers to query tools.

The Value Of Multidimensional Data:

In order to understand the significance of OLAP, it is critical to understand the multidimensional nature

of so much of today’s business data.

The key thing that matters to him is sales by product. But, for each product, he wants to know unit sales,

dollar sales, discounts allowed, and perhaps, certain other key statistics. He wants to know this

information on a daily basis, by region, by salesperson, and by channel. What we have identified is a six

dimensional model. The dimensions are accounts (often also called variables or measures), products,

time, channel, region and salesperson. One of the key features of OLAP technology is that the user is

able to navigate through the data in any way that makes sense, without knowing in advance what the

navigation route might be. Most organizations plan either from the top down or the bottom up. If the

planning is done from the top down the impact of the plan must be projected down to the responsibility

center level in order that managers may be held accountable for their plans. If the planning is done from

the bottom up then the plans must be consolidated so that top management can agree to the overall

plan. In practice, most organizations take a hybrid approach where top management sets some

guidelines which the budget center managers use to build their detailed plans. The consolidated plan is

then reviewed by top management to refine their guidelines, resulting in a further round of planning at

the detailed level. This process may go on for successive iterations. This process is also

multidimensional. The dimensions include accounts, responsibility centers, time, versions (actual, plan,

revised plan). Additional dimensions commonly included are product and customer type. OLAP tools

should be capable of embedding this type of complex business logic in the multidimensional model and

be capable of responding to changing assumptions in real time.

TYBSC-IT (SEM 6) DATA WAREHOUSING

175

WE-IT TUTORILAS PHNO:8097071144/55

OLAP Terminologies:

Basic OLAP System Architecture

Physical multidimensional databases (MOLAP) use a storage mechanism which is optimized for the pre-

calculation, storage, and retrieval of multidimensional data.Real-time Analytical Processing (RAP) deals

with all the multidimensional input values in memory and creates the derived multidimensional values

in real time, on demand.ROLAPs are best suited for large, transaction intensive applications such as high

volume retail sales analysis. Their advantages are the ability to handle extremely large data sets and

having the same technology as existing RDBMS based systems (although different techniques and

optimization are required). However, their complexity, storage vs.calculation orientation, cost and

performance constraints limit the range of applications for which they are suited. For these reasons,

they are not often used for budgeting or business and financial applications. MOLAPs are best suited for

medium sized, static, and mostly static applications, which demand nothing less than sub-second data

retrieval.

RAP is best suited for dynamic applications, for environments that should support a mobile workforce,

and for environments that need to scale from small desktop systems to very large applications with

more than five dimensions.

TYBSC-IT (SEM 6) DATA WAREHOUSING

176

WE-IT TUTORILAS PHNO:8097071144/55

online multidimentional cube

Physical multidimensional databases (MOLAP) use a storage mechanism which is optimized for the pre-

calculation, storage, and retrieval of multidimensional data. Real-time Analytical Processing (RAP) deals

with all the multidimensional input values in memory and creates the derived multidimensional values

in real time, on demand. ROLAPs are best suited for large, transaction intensive applications such as high

volume retail sales analysis. Their advantages are the ability to handle extremely large data sets and

having the same technology as existing RDBMS based systems (although different techniques and

optimization are required). However, their complexity, storage vs.calculation orientation, cost and

performance constraints limit the range of applications for which they are suited. For these reasons,

they are not often used for budgeting or business and financial applications. MOLAPs are best suited for

medium sized, static, and mostly static applications, which demand nothing less than sub-second data

retrieval. Examples of applications in this category are the analysis of historical sales and financial

information. However, since their batch precalculations can take a long time, they are not optimum for

dynamic applications where a result from new or updated data is required. Their batch pre-calculation

approach may also make them unsuitable for large, very sparse applications with more than five

dimensions as the data explosions can be unmanageable.

Understanding Multidimensional Data:
In order to understand the OLAP architectures that can deliver this value, it is first necessary to

understand the nature of multidimensional data. Multidimensional data is almost never 100 per cent

dense. Of all the theoretical cells in the database, typically, only a small percentage is populated.

Consider a real world example of theoretical versus actual hypercube sizes. Even though a medium-sized

table could contain a theoretical 32 million cells generally less than 1,000,000 were actually populated.

Although this sounds like a low' number, this is a real example and is fairly typical of financial data of this

form.

TYBSC-IT (SEM 6) DATA WAREHOUSING

177

WE-IT TUTORILAS PHNO:8097071144/55

Multidimensional Architectures:

multidimentional database architecture

The simplest request is a two dimensional slice of data from the n-dimensional hypercube. The objective

is to retrieve the data equally fast, regardless of the requested dimensions. In practice, such simple

slices are rare; more typically, the requested data is a compound slice where two or more dimensions

are nested as rows or columns. Put another way, the goal is to provide linear response time regardless

of where the data is being retrieved from in the hypercube.

A second role of the server is to provide calculated results. By far the most common calculation is, in

fact, aggregation, but more complex calculations such as ratios and allocations are also required. In fact

the design goal should be to offer a complete algebraic ability where any cell in the hypercube can be

derived from any others, using all standard business and statistical functions including conditional logic.

Most OLAP servers in fact, achieve fast response to computed results by computing them in advance.

This technique can be very effective but will not work well where the size of the fully calculated model is

thousands of times greater than the volume of the input data. This may sound unlikely but, in fact this

can easily happen, particularly where the number of dimensions is large and the hierarchies in each

dimension are deep. This pre-calculation technique is also not effective in the case where the input data

is being updated in real time such as in interactive budgeting or financial reporting applications. This is

because analysts want to see the effect of changes immediately. Forcing a batch mode recalculation of

some or all of the hypercube is very disruptive to the process.

Multidimensional Views Of Relational Data

Some vendors take the view that all data should be stored in relational databases. They provide a

multidimensional view of this data. For this, all of the relational OLAP vendors store the data in a special

way known as a star or snowflake schema. The most common form of these stores the data values in a

de-normalized table known as the fact table. One dimension is selected as the fact dimension and this

dimension forms the columns of the fact table. The other dimensions are stored in additional tables with

the hierarchy defined by child-parent columns. The dimension tables are then relationally joined with

TYBSC-IT (SEM 6) DATA WAREHOUSING

178

WE-IT TUTORILAS PHNO:8097071144/55

the fact table to allow multidimensional queries. The data is retrieved from the relational database into

the client tool by SQL queries. Since SQL was designed as an access language to relational databases, it is

not necessarily optimal for multidimensional queries. For instance, SQL can perform more complex

calculations across rows than across columns. This is not a deficiency of SQL as much as a reflection of

the fact that the relational model was invented to overcome a number of problems associated with

database management. One of the primary problems was maintaining database integrity and ensuring

consistent data updates. By storing the data in relational tables, a single piece of data is stored in one

and only one place. This ensures that the database is consistently maintained and that transaction

updates can be performed in a fast and efficient manner. It is often argued b y vendors of tools that

provide multidimensional views of data stored in relational tables that the data is stored in an open

environment and is therefore accessible.

There are many other good reasons (performance, summarization and organization of data into distinct

time periods, to name three), why the data should be duplicated anyway. Thus, the implication that

using a relationally based DBMS eliminates the need to duplicate the data is not valid. The vast majority

of ROLAP applications are for simple analysis of large volumes of information. Retail sales analysis is the

most common one. The complexity of setup and maintenance has resulted in relatively few applications

of ROLAP to financial data warehousing applications such as financial reporting or budgeting.

Physical Multidimensional Databases:
The next two major OLAP architectures, MOLAP and RAP, provide their own physical multidimensional

databases. These architectures assume that multidimensional models, because of their unique

characteristics of sparsity and the need for potentially complex derived results, need an architecture all

their own. Some of these architectures actually predate the relational model. Although all software

vendors are proud of their architectures and believe they are uniquely efficient (several vendors have

actually patented their algorithms), in practice, there are some common techniques which are used by

many of the vendors. These techniques include:

 Mapping out zero values by compression

 Using indexes of pointers to compressed arrays of values

 Sophisticated caching algorithms

TYBSC-IT (SEM 6) DATA WAREHOUSING

179

WE-IT TUTORILAS PHNO:8097071144/55

Before discussing these two architectures, it is important to understand more about how sparsity causes
database „explosion‟ and its implications.

Data Explosion:

It is not immediately obvious that a fully calculated hypercube is usually dozens of times, and in some

cases many thousands of times, larger than the raw input data. Some would argue that this is not a

problem since disk space is cheap, at least relatively speaking. Despite disk space being relatively cheap,

consider what happens when a 200 MB source file explodes to 10 GB. The database no longer fits on any

laptop for mobile computing. When a 1 GB source file explodes to 50 GB it cannot be accommodated on

typical desktop servers. In both cases, the time to pre-calculate the model for every incremental data

change will likely be many hours. So even though disk space is cheap, the full cost of precalculation can

be unexpectedly large.

There is a trade-off between the time to pre-calculate and response time. Many OLAP vendors assume

that multidimensional databases pre-calculate everything or nothing. As the above chart suggests, the

optimum approach might be to partially pre-calculate and only leave the less requested or smaller

calculations until run time.

Real-Time Analytical Processing (RAP)

RAP takes the approach that derived values should be calculated on demand, not pre-calculated. This

avoids both the long calculation time and the data explosion that occur with the pre-calculation

approach used by most OLAP vendors. In order to calculate on demand quickly enough to provide fast

response, data must be stored in memory. This greatly speeds calculation and results in very fast

response to the vast majority of requests. Another refinement of this would be to calculate numbers

when they are requested but to retain the calculations (as long as they are still valid) so as to support

future requests. This has two compelling advantages. First, only those aggregations which are needed

are ever performed. In a database with a growth factor of 1,000 or more, many of the possible

aggregations may never be requested. Second, in a dynamic, interactive update environment, budgeting

being a common example, calculations are always up to date. There is no waiting for a required pre-

calculation after each incremental data change. It is important to note that since RAP does not pre-

calculate, the RAP database is typically 10 per cent to 25 per cent the size of the data source. This is

because the data source typically requires something like 50-100 bytes per record and possibly more.

Generally, the data source stores one number per record that will be input into the multidimensional

database. Since RAP stores one number (plus indexes) in approximately 12 bytes, the size ratio between

RAP and the data source is typically between 12 / 100=12% and 12 / 50=24%.

Single Hypercube vs. Multicube:
Just as in a relational database, where the data is typically stored in a series of two dimensional tables,

the data in an OLAP database consists of values with differing dimensionality. For example, consider the

case of a bank which wants to analyze profitability by customer and product. Certain revenues may be

TYBSC-IT (SEM 6) DATA WAREHOUSING

180

WE-IT TUTORILAS PHNO:8097071144/55

dimensioned by customer, product, time, geography and scenario. But costs such as back office salaries

might be dimensioned by cost type, cost center and time. Thus, a real world multidimensional database

must be capable of storing data that has differing dimensionality in a single logical database that

presents a single conceptual view to the user. It is not acceptable to insist that all data in the model be

dimensioned by the same criteria. Putting data into an element called “no product” because the data

item happens not to be dimensioned by product, merely serves to confuse the user. Products that

cannot support a multicube architecture With the ability to logically relate cubes, force unreasonable

compromises on the developer of sophisticated models. Not only does it make the access to the data

less logical but it can have serious adverse effects on database size and retrieval efficiency.

Integrated Relational OLAP

Standard relational OLAP technology, while an impressive solution for the most complex decision

support requirements, still has significant room for improvement. One problem is that the data is

physically separated from the analytical processing. For many queries this is not a major issue; however,

it limits the scope of the analysis that is possible. In a traditional ROLAP system, the analysis engine

formulates SQL statements that it sends to the RDBMS server. It then takes the data back from the

server, re-integrates it, and performs further analysis and computations before delivering the finished

results to the user. This usually means that data travels over the network twice: once to the analysis

server and again to the client application.

INTEGRATED ROLAP ARCHITECTURE

The next logical step in the evolution of OLAP technology is the integration of the ROLAP engine with the

scalable, parallel RDBMS itself: integrated relational OLAP. With an integrated database server and cost-

based optimizer for both relational and multidimensional analysis, the “universal” server can give

unprecedented performance and scalability for the data warehouse.

Parallelization
One of the key problems with data warehouses is the sheer volume of data. Parallelization techniques

are critical to performance; breaking down complex actions into smaller parts, each of which can be

executed in parallel. The net result is faster execution. The different database vendors have achieved

TYBSC-IT (SEM 6) DATA WAREHOUSING

181

WE-IT TUTORILAS PHNO:8097071144/55

significantly different results and completeness of their parallelization efforts. That is, not all parts of

most database products have yet been optimized for parallel execution.

Data Partitioning
Effective data partitioning is another prong in the attack on large data volumes. Partitioning enables the

database to automatically distribute portions of a table or tables into more than one logical and/or

physical file, which enhances the ability for the database to parallelize operations and eases

maintenance on the large data sets. Partitioning also enables the database to distribute data over

multiple physical storage devices, which can be operating in full speed in parallel. The database

implementation should support a variety of partitioning options, including range-based partitioning,

hash-based partitioning, and round-robin partitioning, which are critical in data warehouses.

DSS indexes
An index is a means by which an RDBMS ^can very quickly access information from a table (or tables)

without scanning the entire table. Indexes often speed up performance dramatically. There are several

specialized indexes that enhance relational database performance for decision support applications. The

most important type for OLAP-style queries is the “multi-table” index, a generalization of the star join

index. A multi-table index includes columns from more than one table in the same index, effectively

precomputing the joins between the tables. Since joins are one of the slower operations in query

processing, this index can dramatically improve query response time. Another important new index is

the “bitmap” index. Instead of using a traditional tree to represent the index, bitmaps represent the

presence of a given value for a field as a “0” or “ 1” for true or false. Bitmaps efficiently index low

cardinality data; that is, data that has few possibilities for the actual value.

Sampling
Sampling allows users to estimate results based on a partial representation of detailed data, and to do it

in a tiny fraction of the time it would otherwise take to retrieve an answer. Results are derived using

well established, time-tested statistical techniques, and query performance is orders of magnitude

faster. Sampling has long been a trusted technique in academic settings to expedite trend analysis and

accelerate time-critical tasks. It has also been used for decades to enable rapid election polling and to

drive television ratings.

Analytical Extensibility
With the advent of object-relational techniques, it is now possible for customers and third parties to

natively extend the core analytical capabilities of the database server itself. Customers can add

userdefined aggregate functions and user-defined analysis functions to the database using a well-

defined object programming model. Once these functions are defined, they behave just like a built-in

function, with the full parallelization and performance characteristics of the core database.

TYBSC-IT (SEM 6) DATA WAREHOUSING

182

WE-IT TUTORILAS PHNO:8097071144/55

Data Sparsity And Data Explosion:
The reality of data explosion in multidimensional databases is a surprising and widely misunderstood

phenomenon. For those about to implement a project with considerable exposure to OLAP products, it

is critically important to understand what data sparsity and data explosion are, what causes these, and

how these can be avoided for, the consequences of ignoring data explosion can be very costly and, in

most cases, result in project failure. Input data or base data (i.e. before calculated hierarchies or levels)

in OLAP applications is typically sparse (not densely populated). Also, as the number of dimensions

increase, data will typically become sparser (less dense). Data explosion is the phenomenon that occurs

in multidimensional models where the derived or calculated values significantly exceed the base values.

There are three main factors that contribute to data explosion.

1. Sparsely populated base data increases the likelihood of data explosion

2. Many dimensions in a model increase the likelihood of data explosion, and

3. A high number of calculated levels in each dimension increase the likelihood of data explosion

	TYIT DATA WAREHOUSING WE-IT BOOK COVER PAGE
	DW UNIT 1,2,3,4,5,6 NOTES

